ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

Abstract

在移动应用中,实时执行像素级语义分割的能力是至关重要的.针对这一任务的最近的深层神经网络存在着重复使用的缺点。深度神经网络有大量浮点操作,且运行时间长,阻碍了它们的可用性.本文提出了一种新的深层神经网络体系结构-高效神经网络(ENET)。相比于现有的模型,在速度加快了18×倍,浮点计算量上减少了75×,参数减少了79×,且有相似的精度。ENet在CamVid, Cityscapes and SUN datasets做了相关对比测试。

之前看的几篇论文FCN 、SegNet、DeconvNet,模型都基于VGG架构,参数多,虽然SegNet参数较少但是依然不足以在移动设备上使用。自从深度学习用于语义分割,体系结构基本都是Encoder-Decoder,E-net也不例外。本文的新奇架构在于设计的 initial block和 bottleneck module

Architecture

如下图所示,初始化阶段只有图2所示的初始化模块,stage 1~3是编码阶段,stage 4~5属于解码阶段。stage 1包括5个bottleneck模块,stage 2和stage3包括相同的结构,但是stage3没有下采样。
在这里插入图片描述
上图是论文给出的完整架构,依然是encoder-decoder,作者提出了一个新奇的看法:网络的初始层不应该直接面向分类做贡献,而且尽可能的提

当然可以!以下是一些关于道路场景语义分割的研究文献和相关代码资源: 文献: 1. Xiaozhi Chen et al. "Semantic Deep Learning for Advanced Driver Assistance Systems: A Survey." IEEE Transactions on Intelligent Transportation Systems, 2017. [论文链接](https://ieeexplore.ieee.org/abstract/document/7560367) 2. Marc Aubreville et al. "Semantic Segmentation of Road Scenes: A Review." IEEE Intelligent Transportation Systems Magazine, 2018. [论文链接](https://ieeexplore.ieee.org/abstract/document/8533806) 3. Seong-Gyun Jeong et al. "Road Scene Segmentation Using Deep Neural Networks with Pixel-Level Classifiers." Sensors, 2019. [论文链接](https://www.mdpi.com/1424-8220/19/24/5518) 4. Chen-Yu Lee et al. "ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation." CVPR 2018. [论文链接](https://arxiv.org/abs/1606.02147) 代码: 1. MIT Scene Parsing Benchmark: 提供了多种语义分割模型的代码实现和预训练模型,包括FCN、DeepLab等。[GitHub链接](https://github.com/CSAILVision/semantic-segmentation) 2. SegNet: 以Caffe为基础实现的SegNet模型,用于语义分割任务。[GitHub链接](https://github.com/alexgkendall/caffe-segnet) 3. ESPNet: 基于PyTorch实现的轻量级语义分割模型ESPNet。[GitHub链接](https://github.com/sacmehta/ESPNet) 请注意,这些资源提供了一些经典的语义分割模型和实现,但始终建议根据你的具体需求进行选择和进一步的调整。 希望这些资源能对你的研究有所帮助!如有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值