Abstract
在移动应用中,实时执行像素级语义分割的能力是至关重要的.针对这一任务的最近的深层神经网络存在着重复使用的缺点。深度神经网络有大量浮点操作,且运行时间长,阻碍了它们的可用性.本文提出了一种新的深层神经网络体系结构-高效神经网络(ENET)。相比于现有的模型,在速度加快了18×倍,浮点计算量上减少了75×,参数减少了79×,且有相似的精度。ENet在CamVid, Cityscapes and SUN datasets做了相关对比测试。
之前看的几篇论文FCN 、SegNet、DeconvNet,模型都基于VGG架构,参数多,虽然SegNet参数较少但是依然不足以在移动设备上使用。自从深度学习用于语义分割,体系结构基本都是Encoder-Decoder,E-net也不例外。本文的新奇架构在于设计的 initial block和 bottleneck module
Architecture
如下图所示,初始化阶段只有图2所示的初始化模块,stage 1~3是编码阶段,stage 4~5属于解码阶段。stage 1包括5个bottleneck模块,stage 2和stage3包括相同的结构,但是stage3没有下采样。
上图是论文给出的完整架构,依然是encoder-decoder,作者提出了一个新奇的看法:网络的初始层不应该直接面向分类做贡献,而且尽可能的提