教材&算法学习
宇弦酒仙
这个作者很懒,什么都没留下…
展开
-
深度学习自用学习指南【一、入门】
深度学习自用学习指南20210703入门篇入门主要包括了解深度学习的基本概念,基本知识,掌握深度学习解决问题的基本思路,以及思考深度学习工具的常用应用领域和潜在应用领域,一般而言,在入门阶段可以掌握以下知识。1、基础理论,前向传播、反向传播、激活函数、损失函数、梯度下降等基本理论,以及深度学习常见的性能指标;2、常见模型,包括多层感知机、卷积神经网络、循环神经网络、生成对抗网络的基本理论、基本思想、以及模型结构;3、熟悉一种深度学习架构,如Pytorch、Tensorflow;4、配置开发环境,原创 2021-07-03 11:11:47 · 306 阅读 · 0 评论 -
【数字图像处理】python-opencv实现同态滤波
# Homomorphic filter classclass HomomorphicFilter: """Homomorphic filter implemented with diferents filters and an option to an external filter. High-frequency filters implemented: butterworth gaussian Attributes:原创 2020-09-02 17:27:23 · 2145 阅读 · 0 评论 -
【数字图像处理思考】第三章图像的空域变换
思考1、假设你有两张同一建筑物的照片,这两张照片是不同的人在同一天站在同一地点上拍下的,时间相差4个小时,在这4个小时中,有人从该建筑物的某个窗口射击了三枪。负责调查的侦探不知道哪间办公室是事发房间,而对胶片的肉眼视觉检查也无法表明在这段时间内有哪扇窗户被打开或关上,你能帮助他吗?首先要处理的问题是亮度问题,因为拍摄时间不一致导致的亮度差异可以使用灰度均衡来处理,然后进行图像相减,观察图像差异,确定哪个窗户发生了变化。2、图像旋转问题带入公式:...原创 2020-08-04 10:42:12 · 1112 阅读 · 1 评论 -
【数字图像处理思考】第二章节基础知识(python-opencv)
思考1、当数据量为定值时,在什么时候将采样优先考虑?什么情况下将量化优先考虑?为什么?(1)、对于缓变的图像,应当更重视量化,采样可以一般重视。因为图像变化缓慢,采样精度不是很高也不会太影响精度。但是量化太低会容易出现假轮廓。(2)、对于变化比较剧烈,细节程度比较高的图像,要优先考虑采样,因为采样不足会丢失细节、模糊,这样哪怕量化再好也无济于事了。2、在图像量化中,有非均匀量化技术。当灰度级低的时候用它比较有效。但是为什么在灰度级数高时几乎不用?非均匀量化的目的是为了减小量化误差,当本身灰度级数已原创 2020-07-27 18:23:54 · 867 阅读 · 0 评论 -
《利用Python进行数据分析》学习笔记 Pandas基础
前言pandas以NumPy为核心,使用下面这样的pandas引入约定import pandas as pdfrom pandas import Series DataFramePandas的数据结构介绍Seriesobj = Series([4,-5,1,7])objobj.valuesobj.index默认分配索引为从0开始的整数,当然也可以手动赋予索引值。obj2 ...原创 2020-03-24 20:06:59 · 159 阅读 · 0 评论 -
《利用Python进行数据分析》学习笔记 NumPy基础:数组和矢量运算
前言Numpy在运算的基础上,提供了一种简单易用的C API,因此很容易将数据传递给由低级语言编写的外部库,外部库也能用NumPy数组的形式返回给Python,这个功能让Numpy成为一个动态的,易用的库。ndarry 一种多维数组对象ndarry是一个同构数据多维容器,所有的元素必须是相同类型的。每一个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据...原创 2020-03-24 15:17:06 · 221 阅读 · 0 评论