Manus 技术浪潮下,基层公务员的 “危” 与 “机”

Manus 技术浪潮下,基层公务员的 “危” 与 “机”
引言
人工智能(AI)正在深刻影响政府治理方式,特别是在政策解读与执行领域。近期由国内团队发布的通用型AI智能体“Manus”展示了强大的**“场景化提示词封装”能力:用户只需给出简单指令,Manus便可自主规划并完成复杂任务,交付完整成果。例如,在演示中Manus可以自动解压并筛选数十份简历,根据提示要求给出候选人名单和评价标准,甚至生成电子表格作为输出。这类AI代理技术预示着政策文件解读、政务问答等繁琐工作有望极大提速。然而,效率的飞跃是否意味着基层公务员将被机器取代?围绕这一问题,学界和业界出现了技术可行性悖论的讨论:即AI提升效率的同时,会否带来“替代危机”,抑或只是工具升级**?本报告将围绕Manus技术在政策解读中的作用及其对基层公务员就业影响的争议,展开深入的跨学科分析。
本文首先探讨技术可行性悖论:Manus等大模型代理如何赋能政策解读,并结合“国家政策双胞胎”等协作案例讨论AI与公务员协同工作的可能性,以及“替代”与“增效”的辩证关系。其次,分析政策设计的调节作用:运用“生成式AI部署三阶段理论”(实验→局部影响→系统性变革),推演不同政策路径(限制AI应用 vs. 鼓励人机协作)对失业风险分布的影响,并批判性审视技术决定论的局限。第三,审视组织伦理困境:当AI解读政策出错时,算法开发者、部署机构和基层公务员之间的责任如何划分?公务员体系对AI错误往往零容忍,这种风险厌恶是否反而加速了人力边缘化?第四,剖析技能重构的黑暗面:公务员从“政策执行者”向“AI监督者”转型面临怎样的挑战?数字素养鸿沟可能导致哪些群体性淘汰?“提示词技能两极化”现象(基础能力弱化 vs. 专业技能强化)是否让“再培训万能论”难以成立?最后,从长期社会实验视角出发,参考UBI(全民基本收入)与UBAB(全民基本调整福利)的政策争议,展望如果基层公务员岗位大规模消失,可能引发的系统性风险(如政策解读权力的集中化、公共服务去人性化等)及潜在应对方案。通过技术社会学、政治经济学、伦理学等多学科理论框架,本报告力求对上述议题进行全面而深入的争鸣式分析。

  1. 技术可行性悖论:效率提升与人力替代的两难
    Manus的场景化封装能力与效率激增。 Manus作为“全球首款通用AI代理”,能够调用多种大模型执行任务 。它被形象地比喻为人类的“第二双手脚”,不仅提供答案,更能直接代替人完成工作。这一能力在政策解读场景中潜力巨大:AI可以自动阅读政策文件、提炼要点并生成解读材料,大幅缩短人工研读和撰写时间。例如,深圳福田区上线政务大模型后,政策文件审核由原本3天压缩至2小时,基层公务员的会议记录、数据统计等80%事务性工作交由AI代劳。又如某地通过AI公文处理系统实现公文格式修正准确率超95%,审核时间缩短90% 。这些案例显示,在标准化、程序化的政务工作上,AI的速度和准确度已远超人工 。
    效率提升是否必然带来人力替代? 高效自动化引发了公务员“铁饭碗”不保的担忧。然而,多位专家和实践表明这种担忧或有夸大成分。一方面,AI擅长处理结构化、重复性的工作,但在复杂决策、创造力、情感沟通等方面仍无法取代人类 。例如,AI可以根据笔录快速起草公文,但对于带有人情温度的沟通、民生诉求的灵活处理,仍需仰赖富有经验和同理心的公务人员。辽宁大学马弋飞副教授指出,“AI数智员工”或能替代部分基础性事务岗位,但无法完全替代公务员工作,因为公务员面对的是千差万别的基层群众,需要经验智慧和共情能力。深圳实际应用也证实这一点:AI系统可圈定群众诉求的分类和初步方案,但不能独立决定和处理,仍需真人跟进解决。总而言之,当前AI的作用更多是**“助手”而非全能者,“在辅助我们办公,并非万能” 。正如有评论所言,做群众工作“人永远是核心”,AI只能“添个帮手”而不能完全取代人的角色。
    “替代危机” vs. “工具升级”:辩证视角。 技术社会学视角下,AI与人力的关系并非简单零和,而体现为协作共生与分工重塑的辩证统一。一方面,一些岗位的部分职能确实因技术而“消失”,呈现替代效应。例如公文校对、格式规范这类标准化工作,AI几秒即可完成过去人工数小时的任务。深圳福田的经验表明,数据分拨、政策咨询这类高频且规则明确的事项,AI具有相当高的可替代性。这带来了“替代危机”的现实可能:当某些岗位的大部分价值都来自可自动化的工作,其存在必要性会受到质疑。然而另一方面,AI也创造出新的协作模式,实现“工具升级”。AI接管繁琐事务后,人可以专注于更高价值的分析与决策。公务员角色正从体力式“操作者”向智慧型“设计者”转变。例如,深圳为AI配备了“数字监护人”,在关键决策中保留人工干预,使AI成为助手而非主导。又如上海的社区治理中,引入AI社工辅助书记处理居民事务,但最终决策和情感关怀仍由人负责 。这些实践展示了人机协同的可能:AI负责数据处理和方案初拟,人负责审核、调整并提供情感智慧,以
    “1+1>2”的方式提升整体绩效。正如清华大学沈阳教授所言,AI进入公务系统既是挑战也是机遇,关键在于“平衡AI与人工的分工”,让公务员从繁杂事务中解脱出来,转向更有价值的决策支持和公共创新。
    “国家政策双胞胎”协作愿景。 为进一步探讨AI与公务员协作,有学者提出构建
    “国家政策双胞胎”的概念,即为每一项重要政策建立一个数字孪生体,由AI实时解析政策条文、模拟执行效果并提供反馈建议。这类似于某些地方开发的“政策计算器”系统:通过人工智能将海量政策文件按条款拆解成通俗易懂的子项,自动匹配推送给符合条件的对象。在河南洛阳,“政策计算器”将“企业找政策”转变为“政策找企业”,帮助企业一键获取适用的扶持政策,避免错失申报良机 。这一实践可被视为政策领域的数字孪生应用——AI与公务员协同,各展所长:AI负责海量政策知识的记忆与匹配**,公务员则负责判断特殊情况与人情考量,共同提高政策落实的精准度和效率。通过这种“双胞胎”式的人机共创,或可化解“替代危机”:公务员并未被排除在外,而是在更高层次上运用AI工具完成原本无法想象的任务,实现**“工具理性”向“价值理性”**的升级。
    综上,Manus所代表的AI代理技术在政策解读领域展现出惊人的效率优势,但效率提升并不天然等于完全替代。低层次的机械工作将越来越多由AI承担,而人类公务员的工作内容正向高层次、创造性方向延伸。技术决定论认为技术发展会自动导向固定结果,但现实更符合社会建构论:技术的影响取决于人类如何运用它。当前看来,“AI公务员”更像是一种强化公务员能力的“智能外骨骼”——它让能者如虎添翼,也逼着庸者加速转型。究竟是“危”是“机”,取决于组织和个人如何定位AI:视其为夺权的竞争者,则有可能被其取代;视其为得力的助手,则可与其协同创造更高价值。
  2. 政策设计的调节作用:从试验到变革的路径抉择
    AI对就业影响并非线性注定,而是深受政策选择和社会调控的影响。在技术扩散过程中,政策可作为“调节器”改变AI对就业冲击的速度和形式。学者提出“生成式AI部署三阶段理论”,将新技术应用划分为试验探索、局部影响、系统性变革三个阶段:首先在小范围实验验证,其次在特定领域引发局部影响,最终可能引起系统性变革。不同政策介入方式会使AI停留或平稳过渡于某一阶段,进而改变失业风险的分布和严重程度。
    阶段1:实验试点期。 在技术成熟初期,政策往往持谨慎态度,允许有限试点。例如当前Manus仍处于内测阶段,功能尚不完善,开发者也承认存在幻觉、速度等问题需改进。许多政府部门在引入生成式AI时采取“小步快走”的策略,先在内部模拟或非关键性业务中测试AI工具的可靠性。政策选择1:严格限制AI应用。若政府出于风险考虑,对AI解读政策的场景设置高门槛或禁令(例如要求任何AI生成的政策解读内容都需人工复核,多数环节不允许全自动),则AI将长期停留在试验阶段,仅作为后台参考工具。这种政策会减缓AI替代人力的进程,短期内基层岗位流失风险较低。但代价是效率提升受限,公共服务创新放缓,并可能在国际技术竞争中落后。政策限制使技术决定论的“自动替代”逻辑被人为打断,人为塑造了另一种结果:就业结构短期稳定,但技术红利无法充分释放。
    阶段2:局部扩散期。 随着技术成熟,政策可能松绑,让AI在特定领域大展身手。例如我国多地已将大模型DeepSeek部署于12345政务热线、政策问答等场景,取得良好成效。在这一阶段,不同地区和部门的态度各异,有先行者积极拥抱AI,提高效率,也有观望者保持传统模式。政策选择2:促进人机协作。一种中道政策是在确保安全可控的前提下,鼓励AI参与日常工作但要求人类监督。例如深圳福田制定了明确的**“四步走”落地方法论**:数据筑基、技术实施、安全合规和组织能力重塑。尤其强调最后一步,要求配套组织变革,为每个AI智能体指定负责人“监护”,关键环节必须人工把关。通过制度设计将AI定位为辅助手段,凡AI产出必须经公务员审核签发,从而既发挥AI效率优势,又确保人仍握有最终裁量权。这种协作政策的作用在于平缓技术对岗位的冲击:AI渐进接管部分职能,但由于始终有人类参与,公务员角色从执行者转为监督者,岗位数量可能缓慢减少或维持稳定,而非骤然裁撤。此外,政府可同步推出技能培训和岗位转换支持,将部分富余人员转岗为“AI训练师”“数据标注师”等新职,以实现就业的内部消化。因此,在协作导向的政策干预下,失业风险被分散化和时间拉长,给个人和组织更多适应调整的空间。这一过程中体现了技术社会学的观点:技术影响并非自主演进,而是受社会制度塑形。政策如同转轨器,将AI革命导向“慢变革”的轨道,从而避免失业“阵痛”。
    阶段3:系统性变革期。 当技术足够成熟且得到广泛验证,若政策进一步开放,AI可能进入全面应用阶段,引发深层次结构转型。例如展望未来十年,若各级政府普遍采用成熟的大模型智能体处理法规解读、行政审批初审等,大批基层岗位的工作内容将被重新定义甚至消失。政策选择3:无为而治(技术决定论路径)。若政府选择基本不干预,让市场和技术逻辑自由发挥,那么AI的应用将由成本效益驱动快速铺开——凡是AI能做且更经济的工作,都会被AI取代。这相当于默认了技术决定论的剧本:技术发展自动决定社会结果。在此情景下,失业风险可能集中爆发于技术能力所及的领域。例如麦肯锡预测到2030年全球约3.75亿劳动者需要转岗,涉及各行各业。对于基层公务员,可能出现岗位大规模裁撤或自然减员不补的局面——如一个AI能顶替过去十个人的工作,则机构编制将大幅缩减。研究表明,60%职业的至少部分职能在当前技术下已可自动化 ,这暗示在不加干预的条件下,理论上技术最终可消解过半数的传统职业形态。当然,完全自由放任的政策在现实中少有,大多数政府会有所顾虑并干预。但此极端假设有助于我们认识到:政策作为“缓冲器”在吸收技术冲击方面的重要性。在无缓冲的情况下,科技进步曲线将直接投射为就业冲击曲线,出现尖锐的结构失衡和社会风险。
    政策对失业风险分布的调节效果。 综合来看,不同政策选择相当于不同的“滤波器”,调节了技术冲击传导到就业市场的幅度和节奏:
    限制应用会延迟和减弱AI对就业的影响强度,使近期失业风险低,但长远看可能积累技术债务,一旦无法再限制时可能引发更剧烈的变革(所谓“堤内损失堤外补”)。
    协作导向的政策通过分流和转型来平滑影响,将原本集中的失业风险转化为缓慢的岗位演变。其局限在于需要持续投入培训和制度创新,否则可能变成变相的技术停滞。
    自由放任则会加速和集中风险,在短时间内释放技术生产力,也在短时间内制造大量结构性失业,需要依靠市场自身和事后政策(如社保救济)来收拾局面。
    值得注意的是,技术决定论的局限性在于忽视了上述人类干预的空间。技术并非不可抗的自然力,制度设计和价值取向会显著改变技术进程。一味宣称“机器一定会取代人”低估了公共政策的调节能力。例如,有研究建议通过对自动化征税以放缓其扩张速度,从而给工人更多缓冲时间,结果表明这样做可以让劳动者整体更为受益。又如20世纪中叶各国应对机械化失业,有的选择降低工作时长、扩大公共部门以吸纳富余劳动力,有的则放手市场调整,最终就业状况迥异。这些经验都表明,技术进步的经济社会后果并非唯一结局,政策选择塑造着多元可能性。
    因此,我们应摒弃简单的宿命论,转向更加辩证的视角来看待AI对就业的影响。政策是方向盘,科技是引擎。握紧方向盘,我们才能决定引擎带我们驶向何方:是驶入“高效且包容”的未来之路,还是冲向“失业和不平等”的险滩。这要求政策制定者具备前瞻性,在鼓励技术创新与维护社会稳定之间拿捏平衡。例如,及时制定AI治理法规、试点**“就业影响评估”**机制,在部署AI项目时将潜在的人力影响纳入考量,辅以相应安置计划。总之,不同政策路径已然铺展在我们面前,它们将导向截然不同的社会图景——人类不应也不会是被技术牵引的木偶,而应通过智慧抉择,驾驭技术造福社会。
  3. 组织伦理困境:AI失误的责任归属与风险厌恶
    当AI深入参与政策解读与公共服务后,一个无法回避的问题是:如果AI解读出错,责任由谁承担? 此类组织伦理困境涉及法律责任和管理责任的划分,更深层次则涉及对AI能力和局限的认识,以及由此产生的用人导向。在高度强调廉政与准确性的公务员体系中,往往对失误采取“零容忍”态度。那么,当错误来自AI时,这种风险厌恶心态会如何影响AI与人力的取舍?本节从责任问责和风险偏好两个维度分析AI落地基层组织面临的伦理挑战。
    AI决策的问责难题。 理想状态下,责任应与控制相匹配:谁控制了AI的决策,谁就应对后果负责。然而现实中AI系统是典型的“多因一果”:算法由开发者设计,模型由技术团队部署调优,具体应用由公务员使用,而错误的影响可能由公众承担。这种多方参与、算法黑箱的特性使问责变得复杂。例如,某AI解释错误了新的社保政策,导致群众误解并引发不满:是开发者的算法缺陷之过,部署机构审核不严之责,还是一线工作人员监管不力之失?目前普遍的原则是**“最终责任归属使用机构”,即政府部门不能以“是AI干的”来推脱,仍需承担对公众的责任。因此,大多数政务AI应用要求“人类监督者”介入,确保AI输出经过人工审查。深圳福田的实践中,每个“AI公务员”账号都有指定的公务员“监护人”,负责指挥其工作并对其行为负责。这些监护人通过管理平台实时监控AI状态和输出**,对AI给出的政策答复、审批意见进行审核和必要干预,以确保符合规范。换言之,组织上将AI视作无自主地位的工具,其行为后果由背后的技术团队和主管公务员共同承担。这一模式明确了责任主体,从而解决了问责的形式问题。
    但即便责任形式上落实到人,仍存在实际操作中的困境:如果AI错误在先、人工未能察觉纠正,最终造成失误,那么负责监督的人是否要担全责?在传统行政体系中,确实倾向于将AI错误归为人的失职,因为制度上AI没有人格,不能承担法律责任,必然追究使用或管理者。这对一线公务员提出了苛严要求:既要充分利用AI提高效率,又要保证AI“一件不差”。但是大型模型的不确定性和幻觉特点决定了零错误几乎不可能。正如Carnegie伦理委员会指出的,AI往往是黑箱,用户无法完全理解其决策依据,若要求使用者为不可预测的错误负责,等于赋予其不切实际的注意义务。这种缺乏匹配的责任划分,可能让公务员选择降低使用AI的深度来自保。例如,只让AI做粗略初稿,关键部分仍亲力亲为,宁可牺牲效率也不愿冒风险。一些资深公务人员对AI持抵触正源于此:“机器不懂政策的人性温度,出错了还不是要我们收拾?”表明他们担心AI不能处理微妙问题,一旦出事责任还在自己头上。算法不透明+责任人工承担的局面,无疑会降低实际工作中AI的作用发挥,甚至导致“AI闲置”现象——采购了先进系统却束之高阁,因没人敢用或愿用。
    公务员系统的风险厌恶倾向。 公务员体系历来奉行稳妥优先,宁可效率稍低也要确保不出纰漏。这种组织文化在面对AI时表现为零容忍心态:即期望AI系统比人更可靠,否则就难以信任。实际上,人类工作人员也会犯错,但人对于人的错误往往抱有一定容忍(可培训、可申诉等),而一旦AI出错,往往引发对技术的不信任甚至全面否定。这被形象地称为“AI错误零容忍悖论”。它具体表现在:一方面,管理者对AI寄予极高期望,宣传其错误率低于人工,例如福田宣称AI公文处理错误率控制在5%以内,甚至有媒体标题强调**“效率提升100倍”、“准确率99%”等,以示AI几乎不会犯错【49】。但另一方面,一旦AI真的发生哪怕小概率的纰漏,质疑声音会被放大:“连这个都搞错,还敢用在政务上?”于是组织可能收紧AI权限甚至中止应用。这种全或无的态度,反映了对新技术的陌生恐惧与舆论压力顾虑**。毕竟,AI错误容易成为新闻焦点,进而演化为对主管者的问责。因此基层干部往往倾向于把AI作为参考而非依赖,以降低自身承担的风险。
    这种风险厌恶心态如果长期主导,可能产生一种悖论性结果:人力被边缘化反而加速。原因在于,当组织对AI严格设限、凡事要求人工复核甚至双重确认时,短期看似保障了人的作用,但长期可能导致AI只能在“小打小闹”中停滞,无法通过实践迭代达到可靠水平。反观那些敢于让AI承担更多任务并接受可能小错的机构,或许经过反复改进,最终训练出更加可靠的AI系统,具备了替代人工的实力。此时保守机构因为一直未充分利用AI,组织与员工都缺乏经验积累,反而更难与先进系统抗衡,最终更快地被淘汰。简而言之,过度的风险厌恶可能让一些单位错失与AI共同成长的机会,等技术他山之玉已成,反倒没有了人工参与的必要。一份电子政务报告曾尖锐地指出:“不能让AI成为流于表面的数字政绩工程,而应真正成为提升服务质量的利器”。若因畏惧失误而走向形式主义,即表面上用AI、实际上全人力兜底,不仅白白浪费技术红利,还有可能被上级或公众指责“因循守旧”。这对组织领导层也是压力:与其裹足不前,不如大胆推进以抢占先机。于是另一方面,一些改革先锋地区强调“拥抱AI变革既是挑战更是机遇”,要求基层工作人员积极适应新技术,否则就“连个AI也不如” 。这种舆论与绩效导向可能促使决策者跳过漫长的协同阶段,直接追求高度自动化,以证明本地区的科技领先。但跳跃式的自动化伴随的是将人赶到边缘的位置——要么让AI完全决策以消除“人为风险”,要么让人彻底退出流程避免“添乱”。结果,人力在某些环节上被提前淘汰。
    当然,也存在第三种可能:风险厌恶催生新的人力定位——从一线执行转向监督审计角色,专门负责审查AI决策、制定AI伦理规范等。这虽然保留了人的作用,但如果AI高度可靠,人作为审计者可能只是走过场,久而久之陷入“边缘化”。更有甚者,如果AI表现长期完胜人类审核(比如模型错误率远低于人工错误率),组织可能对**“人监督AI”的必要性产生怀疑,进而取消人工复核,彻底让位AI。
    确保责任伦理,平衡创新与稳健。 针对上述困境,政策和管理需要在信任但验证(Trust but verify)之间拿捏。一方面,应完善AI问责机制,明确法律上供应商和使用方的责任边界。例如建立算法备案和审计制度,如果由于算法缺陷导致重大错误,开发商须承担相应责任;而公务员若已尽到合理的审慎义务,则不应为AI不可预知的过失背锅。另一方面,组织文化需要更新对错误的看法,即认识到AI系统不可避免会有偏差,正如新人成长也会犯错一样。应在可控范围内允许AI试错,并将纠错纳入改进循环,而非一票否决。深圳等地采用的“人机双轨验证”模式提供了范例:AI给方案,人来补充特殊经验参数,二者结合优化,既用上了AI智能,又保障了人类经验。在这个过程中,错误被视为学习素材而非灾难——AI的偏差由人修正,人的直觉由AI吸纳,不断逼近零失误。如此建立起正反馈机制,有望化解零容忍心态,将风险厌恶转化为风险管理能力。
    总之,在AI与公务员协作的新常态下,我们需要重新定义
    “责任”:既要防止出现“无人负责”的真空(AI错误无人认账),也要避免“所有责任归人”的不公平(要求人对AI的每次闪失负责)。更重要的是营造一种理性包容的组织氛围**:激励创新应用AI提高公共服务,同时设立安全网和补救措施来兜底残余风险。只有当公务员既有动力用好AI,又不至于因AI小错而前程尽毁,技术潜力才能充分发挥,人机组合的效能才能远超各自。面对不可避免的AI错误,与其恐惧排斥,不如主动担当、持续改进——这考验着组织的智慧与气度,也是迈向**“智慧政府”**的必由之路。
  4. 技能重构的黑暗面:角色转型与数字鸿沟
    随着AI深入政务,基层公务员正面临一场技能重构的考验。从“亲自办”到“指导AI办”,工作范式的变化对人员能力提出全新要求。乐观者宣称通过再培训可以让所有公务员转型为“AI监督者”,但悲观者警示存在数字素养鸿沟与技能两极化的风险,可能出现一部分人迅速适应甚至借助AI如虎添翼,另一部分人却掉队被淘汰。本节从角色转型挑战、数字技能差异、提示词技能两极化和再培训的局限四方面,剖析公务员技能重构过程中的阴影面。
    角色转型的挑战:从执行者到监督者。 传统上,基层公务员的价值在于熟悉政策、踏实执行,很多工作考验的是经验积累和人际沟通技巧。然而在“AI同事”加入后,他们被要求扮演**“AI监督者”的新角色。这意味着日常工作重点从直接办理事项转为监控、校正AI的工作** 。这种转变带来多重挑战:首先是心理上的角色认同问题。许多公务员,尤其老员工,可能不习惯从“一线干将”变成“幕后指导”。他们以往通过处理具体事务获得成就感,如今却要把一部分成就让渡给AI。正如有资深者抱怨“算法不懂行业潜规则”,拒绝接受AI方案。这背后有对自我价值被侵蚀的焦虑。其次是技能组合的调整。监督AI需要懂一些技术原理,知道如何调参、检查数据、发现模型输出异常,还要能将业务经验形式化为AI可理解的规则。这对很多纯文科背景或习惯凭直觉办事的公务员是一道门槛。再次,监督者角色往往意味着同时管理多个AI工具并整合结果,比起过去专注做一件事,工作内容可能更碎片化、更依赖高阶认知。这要求更强的任务切换和信息筛选能力,一些人可能难以适应。此外,监督者的责任压力(前文讨论的问责)也更大,心理负荷增加。所有这些,都使角色转型并非易事。
    数字素养差异与群体淘汰。 公务员队伍年龄、学历层次参差,数字素养存在明显差异。一些年轻公务员对AI技术接受度高,很快学会编写提示词、使用新系统;而部分年长或缺乏技术背景者可能视之如畏途,学习成本高且缺乏动力。这种差异可能导致群体分化:数字敏感者晋升为“AI能力者”,而数字迟钝者沦为“AI局外人”。在一个以绩效为导向的组织里,前者因为借助AI效率猛增、成果突出,自然更受青睐;后者则可能因效率远逊同侪而被边缘,甚至在机构改革中率先被精简。徐默远的一项观察颇具冲击力:某跨国银行内部培训手册显示,2022年Excel高阶函数还是必修课,2024年已换成“如何向AI下达精准指令”。掌握AI的人和不掌握AI的人,其创造价值的差距可达10倍之巨。这种悬殊差距必然引发淘汰机制:对组织来说,低效者(不善用AI者)将失去立足之地。这种数字技能鸿沟带来的淘汰可能具有代际和学科偏向——年长且技能单一的人员最危险,年轻高学历者(尤其具备一定编程、数据背景的)则如鱼得水。一旦AI能力成为评价晋升的新标尺,公务员队伍的人才结构可能发生阵痛式更新。“能者更强,弱者出局”的马太效应在技术驱动变革中会更加明显。这也带来伦理问题:我们是否接受因数字技能差异而出现大规模职业淘汰?抑或应采取措施帮助“后进生”赶上?
    提示词技能两极化:基础弱化 vs. 专业强化。 AI工具的大规模介入,可能引发公务员技能结构的两极化现象。一方面,随着AI承担起大量基础工作,人们对基础技能的依赖减少,长此以往这些技能可能退化。比如,以往一名基层干部需要熟练掌握公文写作格式,而现在AI自动排版、纠错,使新人即便不熟悉格式要求也能生成体面的公文。久而久之,基础写作、基本法条记忆等“硬功”可能弱化。再如,过去需要通读文件才能解读政策,现在很多人习惯性地让AI归纳要点,如果过度依赖工具,人工精读细研政策文本的能力也会下降。公务员可能变成只会看AI输出“摘要”和“解读”的操作者,而缺乏深入原文推敲的训练。这种去技能化(deskilling)并非危言耸听——历史上计算器之于心算、导航之于识图,都出现了类似现象。另一方面,另一极端上出现对新专业技能的强烈需求。能够驾驭AI的人需要掌握所谓“三大元能力”:需求解构力(把模糊任务拆解为AI可执行的步骤)、提示词工程(精确编写提示指令,注重角色设定、场景构建、约束条件等)以及人机校准力(评估AI输出质量并持续优化)。这些都是传统公务员训练体系中没有涉及的全新技能,需要通过实践摸索。于是团队中有人迅速掌握诀窍,成为
    “提示词大师”,有人却止步不前,只会输入简单指令获取平庸结果。结果是内部出现“提示词技能精英”和“提示词技能依赖者”的分化。精英们能调教AI完成复杂任务(比如同时生成分析报告和相关PPT),而依赖者只会调用已有模板,缺乏创新输出能力。这与其说是AI消除了能力差距,不如说是重塑了能力差距
    :掌握新技能的人才在AI时代更加不可或缺,反而凸显出另一种专业壁垒。
    再培训万能论的质疑: 面对上述挑战,常听到的主张是“对公务员进行再培训(reskilling/upskilling)就能解决问题”。然而现实中,再培训并非万能良药,甚至可能是事倍功半的慢方案。首先,从规模上看,AI带来的技能转型需求是前所未有的:麦肯锡预计全球3.75亿劳动者需在2030年前转换职业赛道。如此庞大的人群,单靠传统培训能跟上吗?历史经验令人怀疑:美国“贸易调整援助”(TAA)项目为受贸易冲击下岗者提供再培训和津贴,但评估显示成效不佳,大多数受援者最终依靠社保和伤残补贴度日,并未成功再就业。可见,即使有政府资助,再就业培训成功率也有限。原因包括:并非所有人都具备学习新技能的能力或意愿,年龄较大者学习效率下降,心理上也可能抗拒;再培训周期长,而技术演进更快,往往培训刚结束技能又过时;以及经济压力使失业者难以专心投入培训等。具体到公务员体系,一些基层工作人员长期从事单一事务,知识更新缓慢,突然让其学习AI相关技能,效果难以乐观。有报道指出部分干部对电脑操作都不熟练,更何况掌握AI提示工程。这并非嘲讽,而是提醒决策者正视人力素质多样性的现实。其次,“再培训万能论”忽视了岗位供需错配。假设通过培训真的让一批基层人员掌握了AI技术,那么岗位设置也需要相应调整才能吸纳他们的新技能。问题是,AI如果已经提高了效率,本身可能减少了岗位需求,而不是增加。例如,一个AI监督者可以监控多个AI员工,原本10人的科室或许2-3人即可维持。那么即便培训后每个人都成了合格的AI监督者,也无法改变岗位缩减的事实。优秀者留下,其他人仍然要分流。培训并不能创造出额外的“有意义的工作”。最后,再培训往往聚焦技能本身,却无法化解人性因素。比如面对AI,除了技能,还有心态、文化的调整——有人就是无法信任机器或不愿意改变习惯,这些“观念鸿沟”不是上几门课就能消除的。相反,强制要求人人都学AI技能,可能引发抵触情绪,加剧内部矛盾。如果出现“学不会就下岗”的压力,培训也变了味,难言公平。
    驾驭技能转型:扬长避短。 认清了黑暗面,仍需寻找走出困境之道。组织可以采取多层次策略应对:其一,识别和培养“数字领头羊”。对有潜质的年轻干部给予深入培训和实践机会,让他们成为团队的AI应用专家,形成**“传帮带”机制,带动整体素养提升。其二,为数字弱势群体提供友好的转岗通道**。并非每个人都适合做AI监督者,对那些确实难以适应新技能的,可考虑安排到仍需要人工技巧的岗位(如更多面对面服务的岗位,发挥他们经验优势),或者提前实行内退、借调等,以柔性方式退出而非被淘汰。其三,建立持续学习文化,将AI技能纳入常态培训但不过度施压。比如将“提示词写作”游戏化竞赛,在工作中逐步提高全员水平,让大家看到成果,增加学习动力。其四,注重保持基础能力。要求即使使用AI生成公文,相关人员也必须懂基本写作逻辑,并进行修改润色。通过制度防止完全依赖AI。例如一些机构规定AI生成内容必须标注特殊符号,经审核才能正式发出。这既提示了AI参与,也强迫人员认真复核,从而倒逼其不能丢掉专业基本功。其五,鼓励新岗位创造。在人机协作过程中,会涌现新需求,如数据偏差分析师、AI伦理官等。政府应及时识别这些新职能,设置相应岗位编制,让愿意深耕AI的公务员有职业发展通道,而不是仍套用旧岗位评价标准。
    总之,“AI时代人人都能轻松转型”是一种理想化叙事,实际过程充满阵痛。需要承认,有些传统技能在减弱,有些新技能在强化,人才结构性失衡在所难免。与其盲信再培训包治百病,不如精准施策、分类应对:让擅长者飞得更高,也给平凡者留条出路。从社会公平角度,也要避免数字落后的群体被无声抛弃。这可能需要超出组织层面的解决方案,如针对中老年公务员的提前退休保障、心理辅导,以及跨行业人才流动机制。在技术跃迁时期,考验的是组织的人文关怀和智慧。唯有如此,才能实现技能重构的平稳过渡,最大程度上化解“黑暗面”,让大多数人在新的岗位生态中找到自己的位置,而不只是培养出一小撮“AI精英”伴随着一批“技术弃儿”。
  5. 长期社会实验视角:岗位消失的系统性风险与应对
    如果我们把眼光投向更长远的未来,假设基层公务员岗位因AI而大规模消失,整个社会治理结构和公共服务生态将发生何种变化?这一问题超越了技术和组织层面,上升为社会实验的维度:当一个传统职业群体式微乃至消亡,社会将如何调整以维持稳定与公平?围绕这一可能性,出现了对全民基本收入(UBI)和全民基本调整福利(UBAB)的激烈讨论。这些宏大的政策设想,旨在应对技术失业所带来的系统性风险。下面,我们探讨两个潜在风险:政策解读权力的集中化与公共服务的去人性化,以及可能的应对思路。
    政策解读权集中化:技术垄断与权力再集中。 基层公务员向来是连接政策与民众的“最后一公里”节点。他们对上执行政令,对下反馈民情,在政策解读和落实上具有一定自主裁量空间和在地智慧。如果这一层级的人被AI取代,那么政策解读的权力可能会向少数中央部门或技术精英手中集中。一种可能情况是:政府采用集中式AI系统统一解读和回应政策咨询,全国上下使用同一套算法和知识库。这看似提高了一致性和权威性,但也意味着地方裁量权削弱。政策往往需要结合本地实际灵活执行,而AI“一刀切”的解读可能不适应复杂国情,然而基层已无足够人力来纠偏。更严重的是,掌握AI系统设计和维护的技术企业或中央机构,实际上掌握了对政策条文的“解释权”。这引发对技术垄断的担忧:少数科技公司可能凭借对算法的控制而影响公共决策取向。如果AI模型出现偏见或被恶意干预,政策解读将偏离立法本意且无人察觉,因为原本分散于各层级的人类监督网络已萎缩。正如有评论警示的,不应让AI变成政府决策的黑箱。权力过度集中还削弱了民主监督:过去群众可通过不同层级干部表达利益,现在如果只有冰冷的AI接口,公众话语权将受限,政策反馈机制陷入单向。因此,岗位消失带来的首要系统性风险,是治理权力结构的重塑:从金字塔状的分权网络,变成高度依赖技术中枢的扁平结构。在这种结构下,任何技术故障或决策失误都可能瞬时波及全国,缺乏局部“减震器”。
    公共服务去人性化:冷漠高效的两刃剑。 没有人喜欢面对没有温度的机器,尤其在涉及切身利益和情感诉求的公共服务中。如果基层公务员大量消失,公众接触政府的界面很可能就是AI驱动的自动化系统(APP、自助终端、机器人等)。一方面,服务可能变得高度高效和标准化:24小时在线,无差别对待,每个人得到的答复快速且一致。这看似理想,但另一面是人性关怀的丧失。AI再聪明也缺乏真正的同理心,它无法倾听百姓“唠家常”式的倾诉,无法感知情绪、即兴调整沟通策略。许多公共服务场景中,“效率”并非唯一衡量,群众更需要的是理解和安慰。举例来说,一位低保申请人可能更希望民政干部的耐心解释和鼓励,而非一段算法生成的冰冷通知。去人性化还体现在应变能力下降。突发事件、非常规问题往往出乎既定程序,AI缺乏现场灵机应变和价值权衡能力。没有基层工作人员,危机处理可能陷入机械僵化,要么升级到更高层级浪费宝贵时间,要么AI硬处理造成次生伤害。例如,当政策刚性与群众实际冲突时,过去基层干部可通融折中,现在AI无权越界,只能按规则办,可能激化矛盾。因此,公共服务全面自动化可能带来服务的冰冷化,公民与政府之间失去温情纽带。这种去人性化倾向长远看会侵蚀政府公信力和群众满意度,社会疏离感加重。科技的初衷是让生活更美好,但如果让人感觉政府变成了无脸的机器管家,获得感将大打折扣。社会学者指出,人类社会需要**“温度”来维系认同,完全由理性算法治理的社会或许高效,却可能不是人民所向往的。
    UBI与UBAB:社会安全网的理念之争。 面对上述风险和潜在的大规模失业,许多学者和政策者开始认真讨论全民基本收入(UBI)方案。UBI主张由政府向每个公民无条件定期发放一笔基本收入,确保其在没有工作的情况下也能维持基本生活。这被视为应对AI失业的一剂“社会稳定器”:即使公务员岗位消失,失业者也有收入保障,不至于陷入贫困,从而维护消费需求和社会秩序。一些国家已进行了UBI试验(如芬兰基本收入实验),支持者认为UBI能够给予公众自主选择的自由,鼓励创业和再学习,并减少复杂的福利行政成本。然而,UBI也有激烈的争议:反对者担心其财政不可持续、可能削弱劳动动力(“白拿钱”导致不思进取)、对仍工作的纳税人不公平等。在中国情境下,UBI面临的阻力更大——人口基数庞大、地区发展不平衡,让中央发钱养全民难以想象。同时,文化上“勤劳致富”的价值观也让公众和决策者对无条件保障存疑。
    相比之下,另一种思路是全民基本调整福利(UBAB)。UBAB并非直接送钱给所有人,而是建立一个统一的、面向所有失业或转岗人群的综合支持体系。它汲取了UBI的理念精髓(普惠性)但进行了调整(Adjustment):提供包括失业金、再培训补贴、就业服务、迁移援助等在内的一揽子福利,当任何人因技术变革失业时,都能及时获得帮助以调整到新岗位。UBAB的思路是简化现有零散的社保项目,形成一个
    “单一窗口”的安全网**。Brookings学者穆罗等人就曾建议,美国应该创建**“Universal Basic Adjustment Benefit”,参考UBI但更聚焦于帮助劳动者过渡,而非永久养人。这种方案的好处在于有条件和针对性**:资源投入那些真的需要转换的人,不像UBI对所有人撒钱;同时保留激励,人们仍要经过培训、求职等环节才能持续获得支持。UBAB某种程度上是对“再培训万能论”的政策兜底:它承认再培训不易,所以提供期间的收入补偿和多样支持,让劳动者能安心提升技能,而不用为生计发愁。但UBAB也有局限,假如真的出现无岗位可转的情形(AI把相关行业都占领了),再多调整福利也无法创造新的有价值工作。这时UBAB不过是延缓问题,而UBI式的更激进方案也许才是不得已的选择。
    长期系统性风险:社会稳定与治理挑战。 公务员岗位消失带来的风险不止于就业和服务本身,还涵盖更广泛的社会稳定与治理。首先,大规模失业无疑冲击经济生态。公务员虽非生产部门,但他们的收入养家糊口、消费投资,维持着地方经济活力。如果突然上万人失去铁饭碗,地方消费力下降、房市等都会受影响,加剧区域发展不均。其次,心理和政治层面,中产阶层塌陷可能引发不满。公务员传统上是社会中坚,其收入稳定、身份体面。若这一阶层缩减,社会结构两极分化或空心化,不利于社会承压能力。再次,治理模式需要转变。在没有大量基层人员的情况下,政府或许更多依赖算法决策和社会自治。例如通过AI监控数据自动发现问题,通过线上平台让群众自助完成事务。这类似一种“算法科层制”取代人工科层制,其效率高但脆弱性也高:对电力、网络、数据安全极度依赖。一旦系统崩溃或遭攻击,可能导致治理真空。此外,这种模式下公民与政府的联系弱化,容易产生疏远与不信任。历史表明,当大批人感觉被体制抛弃或无用武之地时,社会思潮可能走向极端,对现有制度产生质疑甚至对立情绪。
    社会实验与前瞻治理。 有鉴于此,我们可以将未来视为一场社会实验:AI究竟会带来人类“解放”还是“失业危机”,取决于我们提前布局哪些制度缓冲。当年工业革命导致无产阶级问题,引发各国探索劳动保护、福利国家等,这本质上也是社会在为技术红利埋单、调整秩序。今天,我们面对类似选择:要不要建立更厚实的社会安全网来兜底可能的失业大潮?如UBI/UBAB等是否可行?这些政策本身有风险,需要试验和公众讨论。比如UBI在小国试点效果尚可,但推行到大国会否引发道德风险、财政透支?UBAB的实施如何简化官僚过程、避免寻租?这些都需要像对待实验一样,逐步试行、评估修正。或许可以选择一些受AI冲击较大的领域(不仅公务员,包括司机、客服等)先行试点UBAB措施,观察对就业和生活的影响。
    同时,我们应思考**“工作”的定义可能在未来发生变化。如果机器承担了大量传统工作,人类的社会角色将不仅通过就业来实现价值。UBI的支持者甚至畅想,人类可以投入更多精力到志愿服务、创意文化、照顾家庭等非正式工作,而基本生计由社会保障提供。政府在这方面可以做的,是营造新价值体系,鼓励多元贡献形式。例如,把照顾老人、社区自治等视为有价值的“劳动”,给予一定积分或补偿,从而填补就业消失后的社会角色空白**。这类似于扩大“工作”的外延,使人们有参与社会的渠道,即便传统雇佣关系减少。
    最后,技术治理国际合作也是长期视角的一环。如果一个国家率先实现高度AI替代并成功实施UBI,别国会观望效仿吗?抑或出现制度竞争?这如同冷战时期不同意识形态的较量,只不过这次是不同自动化社会模型的比拼。例如,有学者担心,如果缺乏国际协调,某国为了生产力最大化彻底用AI代人,短期内会有竞争优势,迫使他国也跟进,最终全球都面临失业难题,社会不稳定风险上升。因此,或许需要在国际层面讨论**“AI减速”或全球共识的劳动保障**,以防止无序竞争导致最坏结果。这远超本文讨论范围,但值得提出:当基层公务员消失不再是科幻而成现实,各国都将置身同一实验场,我们需要集体智慧来确保实验结果朝积极方向发展,而非失控。
    结论
    Manus技术为代表的新一代AI正在政策解读领域展现出惊人的威力。一方面,它预示着效率革命:枯燥繁杂的政务工作可以前所未有地快速准确完成,基层治理迎来“第二大脑”和“第二双手” 。但另一方面,它也引发了对人力替代的深切忧虑:基层公务员赖以安身立命的许多技能正被机器超越,曾经稳固的职业前景变得不确定。本文通过技术社会学、政治经济学和伦理学的多重视角,对此展开争议性分析,得到如下主要结论:
    首先,效率提升与人力替代并非简单此消彼长。AI在标准化任务上高效胜人,这是事实,但在复杂决策和人情沟通上仍需人与之配合。替代与升级是辩证统一的过程:那些愿意拥抱AI为工具者,将发现自己能力被扩展;而拒斥AI或完全依赖AI者,都可能在变化中落伍。所谓“技术可行性悖论”有了解答:技术能做到的不一定意味着人就无用了,关键看我们如何定位技术的角色。“国家政策双胞胎”等协作探索表明,人机共创可以达到单方无法企及的效果,从而缓解替代危机,让AI成为公务员的力量倍增器而非取代者。
    其次,政策设计在很大程度上掌握着AI影响就业的缓急节奏。生成式AI从试验到系统性变革,需要政策松紧的配合。严控之下,技术进展再快也难撼动就业结构;明智的引导可使变革温和发生;放任自流则可能造成骤变冲击。我们强调技术决定论的局限:技术趋势并非不可改写的剧本,社会通过政策这只“有形之手”可以调整剧本走向。选择何种路径,反映了政治经济权衡。最优策略或是在促进创新的同时建立社保缓冲,避免陷入技术极乐世界或保守故步自封的极端。
    第三,组织必须直面AI带来的伦理困境。AI错漏的责任如何追究、算法如何透明可控,这是AI治理绕不过的坎。公务员体系当前的零容忍文化对待AI,需要转化为更成熟的风险管理思维。建立责任机制的同时,要赋予工作人员合理的容错空间,否则风险厌恶将阻碍技术应用,或在另一个极端下催生对人的淘汰。明确“人监控AI、AI辅助人”的权责边界,将有助于在人机协作中既保障公共利益又不压垮个人。组织应从制度和文化上调整,对AI可能的小错抱有理性预期,通过人机双轨验证等措施持续改进,而非简单否决或盲目信任。
    第四,技能重构注定是AI革命中伴随的阵痛。公务员队伍内部将出现显著的能力分化,这是技术引发的“新不平等”。提示词工程等新技能会成为香饽饽,而传统基础能力可能退化。应对之道除了培训,更要有制度创新,让不同能力的人各尽其用,防止数字鸿沟演变为就业鸿沟。再培训固然重要,但并非灵丹,必须辅以岗位调整和心理支持政策。我们要做好准备,承认有些人无法转型,并为他们提供体面的退出或转岗选项。唯有如此,才能避免一刀切的技能革命造成大批“数字弃民”。
    最后,从宏观长远看,AI引发的就业范式转变是一场全社会实验。如果基层公务员这些传统岗位真的大量消失,我们需要重新设计社会安全网和价值体系。UBI和UBAB代表了两种不同的社会保障理念:一个主张用普惠收入保障人的生存尊严,一个主张用全面支持帮助人再就业。或许未来的方案会是二者的结合或变体,但无论如何,现在就应开始讨论和试点,以免将来手足无措。同时,必须警惕治理中的集中化和去人性化倾向。技术集中不能代替民主参与,效率至上不能牺牲温情关怀。人本价值仍应是公共服务的核心:AI要为每个人服务,而不是每个人为AI系统适应。正如有人所言,“真正改变世界的从来不是技术本身,而是人类运用技术的方式”。我们需要以此为鉴,在追求智能政府的同时,守住人文关怀和社会公平的底线。
    总而言之,Manus技术在政策解读中的应用是一把“双刃剑”,带来机遇也伴随挑战。它促使我们重新审视公务员的角色和价值,重新想象未来的工作与生活。应对这场变革,没有现成答案,需要凝聚社会各方智慧,共同探索一条人机共荣、社会进步之路。这条路上充满争议和不确定性,但只要始终以人的福祉为中心,我们就有信心将AI时代塑造成既高效又有温度、既繁荣又有公正的崭新社会。正如本文所做的分析,重要的不是站在哪个极端,而是在复杂的争议中寻求辩证的平衡,在理性的对话中达成创新的共识——这或许正是这场学术争论带给我们的最大启示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘉图明

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值