1 跳跃游戏
给你一个整数数组 arr ,你一开始在数组的第一个元素处(下标为 0)。
每一步,你可以从下标 i 跳到下标:
i + 1 满足:i + 1 < arr.length
i - 1 满足:i - 1 >= 0
j 满足:arr[i] == arr[j] 且 i != j
请你返回到达数组最后一个元素的下标处所需的 最少操作次数 。
注意:任何时候你都不能跳到数组外面。
示例 1:
输入:arr = [100,-23,-23,404,100,23,23,23,3,404]
输出:3
解释:那你需要跳跃 3 次,下标依次为 0 --> 4 --> 3 --> 9 。下标 9 为数组的最后一个元素的下标。
示例 2:
输入:arr = [7]
输出:0
解释:一开始就在最后一个元素处,所以你不需要跳跃。
示例 3:
输入:arr = [7,6,9,6,9,6,9,7]
输出:1
解释:你可以直接从下标 0 处跳到下标 7 处,也就是数组的最后一个元素处。
示例 4:
输入:arr = [6,1,9]
输出:2
示例 5:
输入:arr = [11,22,7,7,7,7,7,7,7,22,13]
输出:3
提示:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
解题思路:BFS
将数组想象成一张图,节点i与节点j相连,当且仅当i,j相邻,或者i,j的值相同,如果节点i和j之间存在边,那么节点j和i之间不再有边,每次搜索时,依次遍历当前节点的邻接顶点,如果遍历的节点是最后一个节点,则结束遍历,返回路径长度
class Solution {
public:
int minJumps(vector<int>& arr) {
int n = arr.size();
//保存遍历到节点i时刻的路径长度
vector<int> dis(n,-1);
//用来存储节点值相同的节点
unordered_map<int,vector<int>> mp;
//保存接下来要遍历的节点
queue<int> q;
dis[0]=0;
q.push(0);
for(int i=0;i<n;i++){
mp[arr[i]].push_back(i);
}
while(!q.empty()){
int node = q.front();
q.pop();
if(node==n-1){
//如果当前节点是最后一个节点,返回路径长度
return dis[node];
}
if(node>0&&dis[node-1]==-1){
q.push(node-1);
dis[node-1]=dis[node]+1;
}
if(node<n-1&&dis[node+1]==-1){
q.push(node+1);
dis[node+1]=dis[node]+1;
}
for(int i:mp[arr[node]]){
if(dis[i]==-1){
q.push(i);
dis[i]=dis[node]+1;
}
}
mp[arr[node]]={};
}
return dis[0];
}
};
**[注]**第一次做这种题目,很遗憾,没有解出来,一点思路都没有,参考了别人的解题思路写出自己的代码,多理解解题思想吧
2 盛水最多的容器
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解题思路:双指针
第一想法是暴力解法,从当前位置向后遍历,找出最大的容器,时间复杂度为O(N*N),超时
后来才了解到,可以用双指针來解此题
双指针思路:头指针指向第一个元素,尾指针指向最后一个元素,计算此时容器大小,然后移动较小的一个指针,为什么移动较小的指针呢,因为容器的容积是由较小的边决定的,如果移动较大的边,那么容器的容积必定减小,因为高不变,但底边必定减小,故移动较小边指针。
或者可以这样理解:假定初始状态左边较小,则左右两边在边界处是固定左边不动,遍历右边能达到的最大容积;然后左边往右移动,此时再判断,假设此时右边较小,则此时左右两边在边界处是固定右边的边不动,遍历左边能达到的最大容积,依次类推,便能求出最大容积,这种思考方式跟第一种暴力解法思想相同,只是减少了很多不必要的比较过程,时间复杂度为O(N).
class Solution {
public:
int maxArea(vector<int>& height) {
int i=0,j=height.size()-1;
int maxV=0;
while(i<j){
if(height[i]<=height[j]){
maxV = max(maxV,height[i]*(j-i));
i++;
}else{
maxV = max(maxV,height[j]*(j-i));
j--;
}
}
return maxV;
}
};