POJ2430 Lazy Cows【状压DP+离散化】

POJ - 2430传送门

 

题意:有n头牛在2*b的牧场上,只可以修建k(k<=n)个矩形牛棚,牛棚之间不能有重叠的部分,求牛棚的最小面积。

分析:用dp[i][j][l]表示前i列的牛都铺满,用去啦j个帐篷,状态为l,的最小面积

l==0,表示没有铺

l==1,表示铺啦第一格

l==2,表示铺啦第二格

l==3,表示铺啦一二格,且不在一个矩形里。

l==4,表示铺啦一二格,且在一个矩形里。

ACcode

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
int dp[1010][1010][5],n,k,m,b[1010][2];
struct edge
{
    int x,l;
    bool operator<(const edge &c)const
    {
        return x<c.x;
    }
}a[1010];
int main()
{
    while(scanf("%d%d%d",&n,&k,&m)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&a[i].l,&a[i].x);
        }
        sort(a+1,a+n+1);
        int n2=1;
        for(int i=2;i<=n;i++)
        {
            if(a[i].x!=a[i-1].x)
                a[++n2]=a[i];
            else
                a[n2].l=3;
        }
        n=n2;
        //cout<<n<<endl;
        memset(b,0,sizeof(b));
        for(int i=1;i<=n;i++)
        {
            if(a[i].l==1)
                b[i][1]=1;
            else if(a[i].l==2)
                b[i][2]=1;
            else
            {
                b[i][1]=b[i][2]=1;
            }
        }
         memset(dp,50,sizeof(dp));
        dp[0][0][0]=0;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<=k;j++)
            {
                for(int l=0;l<5;l++)
                {
                    if(!b[i+1][2])
                    dp[i+1][j+1][1]=min(dp[i+1][j+1][1],dp[i][j][l]+1);
                    if(!b[i+1][1])
                    dp[i+1][j+1][2]=min(dp[i+1][j+1][2],dp[i][j][l]+1);

                    dp[i+1][j+2][3]=min(dp[i+1][j+2][3],dp[i][j][l]+2);
                    dp[i+1][j+1][4]=min(dp[i+1][j+1][4],dp[i][j][l]+2);
                    if(l==1)
                    {
                     if(!b[i+1][2])
                     dp[i+1][j][1]=min(dp[i+1][j][1],dp[i][j][1]+a[i+1].x-a[i].x);
                     else
                     dp[i+1][j+1][3]=min(dp[i+1][j+1][3],dp[i][j][1]+a[i+1].x-a[i].x+1);
                    }
                    else if(l==2)
                    {
                    if(!b[i+1][1])
                dp[i+1][j][2]=min(dp[i+1][j][2],dp[i][j][2]+a[i+1].x-a[i].x);
                    else
                dp[i+1][j+1][3]=min(dp[i+1][j+1][3],dp[i][j][2]+a[i+1].x-a[i].x+1);
                    }
                    else if(l==3)
                    {
                    if(!b[i+1][2])
                dp[i+1][j][1]=min(dp[i+1][j][1],dp[i][j][3]+a[i+1].x-a[i].x);
                    else
                dp[i+1][j+1][3]=min(dp[i+1][j+1][3],dp[i][j][3]+a[i+1].x-a[i].x+1);

                    if(!b[i+1][1])
                dp[i+1][j][2]=min(dp[i+1][j][2],dp[i][j][3]+a[i+1].x-a[i].x);
                    else
                dp[i+1][j+1][3]=min(dp[i+1][j+1][3],dp[i][j][3]+a[i+1].x-a[i].x+1);

                dp[i+1][j][3]=min(dp[i+1][j][3],dp[i][j][3]+2*(a[i+1].x-a[i].x));
                    }
                    else if(l==4)
                    {
                dp[i+1][j][4]=min(dp[i+1][j][4],dp[i][j][4]+2*(a[i+1].x-a[i].x));
                    }
                }
            }
        }
        int ans=INF;
        for(int i=0;i<=k;i++)
        {for(int l=0;l<5;l++)
          {
           //cout<<dp[n][i][l]<<" ";
            ans=min(ans,dp[n][i][l]+k-i);
          }//cout<<endl;
            }printf("%d\n",ans);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值