基于豆瓣爬取的电影数据所做的分析(练习)

基于知乎用户分享的两千多条电影数据,本文分析了电影评分的正态分布,找出了评分低于4的烂片,并探讨了烂片的主要类型及主演。结果显示,大部分烂片类型集中在某特定地区,而主演鲜为人知。这些发现为观众提供了观影参考。
摘要由CSDN通过智能技术生成

数据来源是知乎乎友做完数据分析展示,分享提供的。我们来学习一下。

数据项有:豆瓣评论数,豆瓣评分,上映日期,主演,制片国家或者地区,别名,导演,片长,类型,编剧,语言。一共大概有两千多条数据。不是特别的多。

 

我们首先来根据评分判断一下,是否服从正太分布。

fig = plt.figure(figsize = (10,6))
plt.subplots_adjust(hspace=0.2)

ax1 = fig.add_subplot(2,1,1)  
df['豆瓣评分'].plot.hist(stacked=True,bins=50,color = 'green',alpha=0.5,grid=True)
plt.ylim([0,150])
plt.title('豆瓣评分数据分布-直方图')

ax2 = fig.add_subplot(2,1,2)
color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray')
df['豆瓣评分'].plot.box(vert=False, grid = True,color = color) 
plt.title('豆瓣评分数据分布-箱型图')

df['豆瓣评分'].describe()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值