同花顺_代码解析_技术指标_A

本文通过对同花顺中现成代码进行解析,用以了解同花顺相关策略设计的思想

目录

ABI

AD

ADL

ADR

ADTM

ADVOL

AMV

ARBR

ARMS

ASI

ATR 


ABI

 绝对幅度指标

 

算法:上涨家数减去下跌家数所得的差的绝对值。

该指标只适用于大盘日线。

行号

1

aa -> 上涨家数与下跌家数之间的差值 除以 上涨和下跌的家数之和

2

ABIaa -> 对 aa 求移动平均

对每一交易日求:

 偏移值=(收盘价-最低价)-(最高价-收盘价)

 振幅 =最高价-最低价

 用偏移值除以振幅,再乘以成交量,得一值。

将该值从上市第一天起开始累加,得AD值

行号

1

SUM(表达式,0) -> SUM函数第二个参数为0,表示从上市第一天其开始计算

ADL

 

1.ADL与指数顶背离时,指数向下反转机会大;

2.ADL与指数底背离时,指数向上反转机会大;

3.ADL须与ADR 、OBOS等指标配合使用。

4.ADL只适用于大盘指数

行号

1

值 -> 上涨家数减去下跌家数

2

zero -> 返回0

4~7

如果不是大盘指数,返回提示信息

ADR

 涨跌比率

 

大盘指标

算法:ADR = N日上涨家数和/N日下跌家数和

参数:N 天数 一般取10日

用法:

1.ADR与大盘走势同,后市维持原趋势的可能性极大

2.ADR常态分布为0.5至1.5,高过上限,警惕超买;低过下限,警惕超卖

行号

1

SUM(RISECOUNT,N) -> N日上涨家数的和

SUM(FALLCOUNT,N) -> N日下跌家数的和

ADTM

 动态买卖气指标

 

DTM赋值:如果开盘价<=昨日开盘价,返回0,否则返回(最高价-开盘价)和(开盘价-昨日开盘价)的较大值

DBM赋值:如果开盘价>=昨日开盘价,返回0,否则返回(开盘价-最低价)和(开盘价-昨日开盘价)的较大值

STM赋值:DTM的N日累和

SBM赋值:DBM的N日累和

输出动态买卖气指标:如果STM>SBM,返回(STM-SBM)/STM,否则返回如果STM=SBM,返回0,否则返回(STM-SBM)/SBM

输出MAADTM:ADTM的M日简单移动平均

1.该指标在+1到-1之间波动;

2.低于-0.5时为很好的买入点,高于+0.5时需注意风险.

行号

1

REF(OPEN,1) -> 昨日的开盘价

MAX(表达式1,表达式2) -> 返回表达式1和表达式2 中较大值

ADVOL

 钱龙离散量

行号

1

对每一交易日求:

 偏移值=(收盘价-最低价)-(最高价-收盘价)

 振幅 =最高价-最低价

 用偏移值除以振幅,再乘以成交量,得一值。

AMV

 成本价均线

AMv0:成交量*(开盘价+收盘价)/2

AMV1:AMOV的M1日累和/成交量的M1日累和

AMV2:AMOV的M2日累和/成交量的M2日累和

AMV3:AMOV的M3日累和/成交量的M3日累和

AMV4:AMOV的M4日累和/成交量的M4日累和

成本价均线不同于一般移动平均线系统,成本价均线系统首次将成交量引入均线系统,充分提高均线系统的可靠性。同样对于成本价均线可以使用月均线系统(5,10,20,250)和季均线系统(20,40,60,250),另外成本价均线还可以使用自身特有的均线系统(5,13,34,250),称为市场平均建仓成本均线,简称成本价均线。在四个均线中参数为250的均线为年度均线,为行情支撑均线。成本均线不容易造成虚假信号或骗线,比如某日股价无量暴涨,移动均线会大幅拉升,但成本均线却不会大幅上升,因为在无量的情况下市场持仓成本不会有太大的变化。依据均线理论,当短期均线站在长期均线之上时叫多头排列,反之就叫空头排列。短期均线上穿长期均线叫金叉,短期均线下穿长期均线叫死叉。均线的多头排列是牛市的标志,空头排列是熊市的标志。均线系统一直是市场广泛认可的简单而可靠的分析指标,其使用要点是尽量做多头排列的股票,回避空头排列的股票。34日成本线是市场牛熊的重要的分水岭。一旦股价跌破34日成本线,则常常是最后的出逃机会。

ARBR

 人气意愿指标

行号

1

AR -> (最高价-开盘价)在M1天内的累加和 除以 (开盘价-最低价)在M1天内的累加和

-> (最高价-开盘价)可以理解为人们正面的意愿,(开盘价-最低价)可以理解为人们负面的意愿

2

MAX(0,HIGH-REF(CLOSE,1)) -> 如果最高价比昨日收盘价高,返回高出的值,否则返回0

MAX(0,REF(CLOSE,1)-LOW) -> 如果昨日收盘价比今日最低价大,返回多出的值,否则返回0

BR -> 累加M1天内,每日最高价高出昨收的部分,每日昨收多出最低价的部分,两者相除

-> 最高价高出昨收的部分代表正面意愿,昨收多出最低价的部分代表负面意愿

3

参考上限值

4

参考下限值

ARMS

 阿姆氏指标

 

行号

1

FALLNUM存放当日下跌家数

2~3

如果今日下跌家数为0,昨日下跌家数也为0,FALLNUM就放前日的下跌家数

4~5

如果今日下跌家数为0,FALLNUM存放昨日的下跌家数

6

ARMS -> 上涨家数与下跌家数比值的N日移动平均

ASI

 振动升降指标

当ASI向下跌破前一次低点时为卖出讯号,当ASI向上突破前一次高点时为买入讯号,价由下往上欲穿过前一波的高点套牢区时,于接近高点处,尚未确定能否顺利穿越之际。如果ASI领先股价,提早一步,通过相对股价的前一波ASI高点,则次一日之后,可以确定股价必然能顺利突破高点套牢区。股价由上往下,欲穿越前一波低点的密集支撑区时,于接近低点处,尚未确定是否将因失去信心,而跌破支撑之际。如果ASI领先股价,提早一步,跌破

相对股价的前一波ASI低点,则次一日之后,可以确定股价将随后跌破价点支撑区。股价走势一波比一波高,而ASI却未相对创新高点形成“牛背离”时,为卖出参考。股价走势一波比一波低,而ASI却未相对创新低点形成“熊背离”时,为买进参考。

行号

1

LC -> 昨日收盘价

2

AA -> 最高价减昨收绝对值 -> 相对昨收的向上振幅

3

BB -> 最低价减昨收绝对值 -> 相对昨收的向下振幅

4

CC -> 最高价减昨日最低价绝对值

5

DD -> 昨收减昨日开盘价绝对值 -> 昨日实体长度

6

AA>BB AND AA>CC -> 这个条件永远都无法成立【看论证1】

BB>CC AND BB>AA -> 成立的情况【看论证2】

7

X -> 今日收盘价 - 昨收 + (今日收盘价-今日开盘价)/2 + 昨收 - 昨日开盘价

8

SI -> 16*X/R*MAX(AA,BB)

9

ASI -> SI的M1天累加和

10

ASIT -> ASI的M2天移动平均

论证1 

 论证2

ATR 

 真实波幅

输出TR:(最高价-最低价)和昨收-最高价的绝对值的较大值和昨收-最低价的绝对值的较大值

输出真实波幅:TR的N日简单移动平均

算法:今日振幅、今日最高与昨收差价、今日最低与昨收差价中的最大值,为真实波幅,求真实波幅的N日移动平均

参数:N 天数,一般取14

### 如何通过同花顺API或工具获取盘后分钟级股票数据 同花顺API是一种用于开发者的工具接口,允许开发者访问同花顺的金融数据资源。对于获取股票盘后分钟级别的交易数据,可以通过技术指标查询接口实现这一目标[^1]。 #### 使用同花顺API的具体方法 以下是获取盘后分钟级别交易数据的方法: 1. **注册并申请API权限** 需要在同花顺官网或其他授权渠道完成开发者账号注册,并申请相应的API权限。通常需要填写用途说明并通过审核才能获得正式接入资格。 2. **调用历史K线数据接口** 同花顺提供了多种类型的市场数据接口,其中包括历史分时数据和K线图数据。针对盘后分钟级数据的需求,可以选择`历史K线数据接口`来提取特定时间段内的分钟级价格变动记录。这类接口支持按时间范围筛选参数,例如起始日期、结束日期等设置选项。 3. **解析返回结果** API响应通常是JSON格式的数据包形式传递给客户端程序。这些数据可能包含开盘价(open)、收盘价(close)、最高价(high)、最低价(low),以及成交量(volume)等多个字段信息。因此,在接收服务器反馈之后,需利用编程语言(如Python)编写脚本处理原始数据流以便进一步分析应用。 ```python import requests def fetch_minute_data(stock_code, start_date, end_date): url = f"http://api.wmcloud.com/data/v1/stock/{stock_code}/minute?startDate={start_date}&endDate={end_date}" headers = { 'Authorization': 'Bearer YOUR_ACCESS_TOKEN' } response = requests.get(url=url, headers=headers) if response.status_code == 200: data = response.json() return data['data'] else: raise Exception(f"Failed to retrieve data: {response.text}") # Example usage try: stock_code = "000001.SZ" start_date = "2023-01-01" end_date = "2023-09-01" minute_data = fetch_minute_data(stock_code, start_date, end_date) print(minute_data[:5]) # Print first five records as sample output. except Exception as e: print(e) ``` 注意上述代码仅为示意目的所写,实际部署前应替换真实有效的URL路径及认证令牌等内容。 #### 关于其他替代方案 如果无法直接使用官方提供的API服务,则还可以考虑借助第三方爬虫框架或者自动化测试工具模拟登录行为抓取网页上的公开披露资料。不过需要注意的是,这种方式往往违反了网站的服务条款(TOS),并且容易受到反爬机制干扰而导致失败率较高。所以建议优先选用合法合规的技术手段即官方开放的标准协议来进行操作[^2]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值