- 博客(18)
- 收藏
- 关注
原创 论文笔记——Body Structure Aware Deep Crowd Counting
本文针对以往的基于density map的方法,提出其缺点是没有将人的外形信息考虑在内。因此提出了加入语义信息来提高准确度的方法。该方法主要分为三大部分:身体部分图、结构化密度图和多任务人群计数框架。身体部分图(Body part map):该部分作用是将真值图中的每个人标注出来。作者假设一个实际空间中长2米、宽1米的框能将人彻底包括。因此每个人都可以用长方形框对角线的两个像素点表示,计算方法为...
2019-03-05 11:40:29 375 1
原创 Geometric and Physical Constraints for Head Plane Crowd Density Estimation in Videos
这篇文章从解决透视畸变入手,先提出以往解决透视畸变的方法是学习具有尺度不变性的特征和将输入图片分为不同尺寸的图像块进行估计两种方法。透视畸变对人群密度估计产生的影响往往在于远近像素代表的实际大小不同。举个例子,远近相同大小的两片区域站相同数量的人,如果不考虑透视畸变,则估计出来的两片区域的人群密度是不同的。文章中也给出了实验证明:a中的红框中两块区域的密度是差不多的,但是真值图b显示,两块区域...
2019-02-22 16:36:07 334
原创 CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
本文首先针对MCNN,提出了其两个缺点:大量的训练时间和无效的分支架构。MCNN由于使用了多列网络,参数比较多,需要训练时间长容易理解。可是作者为什么说MCNN的多列是“无效的分支”呢?文中给出了实验。MCNN的主要设计目的是利用每一列的不同感受野来估计不同拥挤等级的场景。即设计者想让三列网络提取出不同的特征。作者取出了Shanghai Part_A中的50个样例,分别输入到MCNN的三列网...
2019-02-21 21:08:32 1040
转载 tensorflow学习笔记——session的使用
转自https://blog.csdn.net/androidchanhao/article/details/79595004TensorFlow中只有让Graph(计算图)上的节点在Session(会话)中执行,才会得到结果。Session的开启涉及真实的运算,因此比较消耗资源。在使用结束后,务必关闭Session。import tensorflow as tfa = tf.consta...
2019-02-19 16:19:20 305
转载 tensorflow学习笔记——conv2d函数
转自 http://www.cnblogs.com/welhzh/p/6607581.htmltf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=N...
2019-02-19 15:34:09 1398
原创 DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
本文介绍了一种将探测和回归方法结合的方法。作者发现,探测方法对于低密度的人群计算效果比回归方法好,而对于高密度的人群计数则正好相反,由此产生灵感。本文的主要贡献在于:1.提出一种探测和回归结合的方法。2.提出了DecideNet网络。这种网络可以根据人群密度的变化自适应地调整探测和回归两种方法的权重。3.经过实验,这是目前最优的方法。本文的网络结构如下:可以看出包含了三个网络:Reg...
2018-12-24 20:49:07 1078 2
原创 A-CCNN: ADAPTIVE CCNN FOR DENSITY ESTIMATION AND CROWD COUNTING
本文是对CCNN网络的一个改善。CCNN网络检测人群密度图的真值生成方法是:N是一个2D高斯函数。AI表示图像I中的标注点的数量。对于CCNN,有两个参数非常重要,分别是分块的尺寸(Patch size)和高斯函数的协方差。这样处理有一个问题在于对于所有尺度的人群,这两个参数是相同的,即密度真值图的生成方法是相同的,这就导致了不准确。本文提出的A-CCNN方法是,先通过头部检测器检测出每...
2018-12-23 15:32:20 394
原创 Large scale crowd analysis based on convolutional neural network
Introduction本论文主要是用CNN网络计算人群进出流量的。主要贡献在于:1.通过3个CNN模型,估计进入和离开人群的数量。与传统方法比,这种方法在实际场景下有更好的鲁棒性。此外,这个方法结合了分类CNN(对于人流模型,进入或退出)和回归CNN模型(人流数量),一般的方法只是直接用回归CNN模型计算人数。2.建立了一个包含140,000个时间切片图,其中有7个真实场景和许多人。3....
2018-12-14 20:22:29 240
原创 Cross-scene Crowd Counting via Deep Convolutional Neural Networks
Abstract跨场景人群计数是一个困难任务。目前大多数人群计数方法当应用到一个从未见过的场景中时,性能都会有大幅下降。我们提出了一种CNN,可以被选择训练来进行人群密度和人群计数,这种可切换式的学习途径能获得更好的局部最优解。针对从未见过的目标人群场景,我们提出了一种数据驱动的方法微调训练好的CNN模型来达到目的。提出了一个新的数据集。Introduction人群计数是一个具有挑战性的任务...
2018-12-14 17:35:58 1516
原创 CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting
Introduction人群计数所面临的挑战之一是由视角畸变导致的外观和尺度变化。许多方法都将尺度信息合并到学习过程中。早期的方法是通过多源或者手工设计提取特征,但是这些方法在高密度人群中是无效的,而且结果不是最优的。目前基于CNN的方法开始应用在人群计数上。考虑到尺度问题是影响准确率的一个因素,有些基于CNN的方法通过多列网络或多分辨率网络解决这个问题。虽然这些方法对于尺度变化有一定的鲁棒性,...
2018-12-12 16:27:03 1510 2
原创 BRISK: Binary Robust Invariant Scalable Keypoints
本文提出了一种新的图像特征点提取算法,最终产生一个二进制的描述符。步骤如下:BRISK所提取的点具有尺度不变性,为了保证特征点具有尺度不变性,就必须进行尺度空间的构建。先构建n个octave层(用Ci表示),C0即为原图像,Ci层为Ci-1层下的2倍采样。为了使尺度空间之间更加平滑,再构造intra-octave层(用Di表示),原图像为D-1层,D0为D-1层的1.5倍采样,其后D层之间仍然为...
2018-11-27 20:02:18 472
转载 HOG特征
HOG特征是图像特征提取中的一种常用特征,这种特征在行人检测上已经获得了巨大成功。这种特征的主要思想是应用了目标的表象和形状能够被梯度或者边缘的方向密度分布很好的表示,即物体边缘的像素值通常变化很大。HOG特征提取方法分为以下几个步骤:1.灰度化(将图像看成一个x y(位置) z(灰度)的三维图像)2.利用Gamma校正法对输入图像进行颜色空间的标准化,目的是调节图像的对比度,降低图像局部的...
2018-11-25 17:19:22 174
转载 积分图像与积分直方图
积分图像来源:http://blog.sina.com.cn/s/blog_5562b0440102wgxs.html以灰度图像为例子进行讲解,一个图像内矩形区域的积分是指该区域内所有灰度值的和,即:所选定区域的积分为:如图以3x6图像为例,左侧是原始图像,右侧是其积分图像,其中(2,4)位置的积分为16:很显然,如果只是针对小区域的话,这样的加减倒也不是很复杂,如果这个区域包含...
2018-11-24 14:35:36 697
转载 Mean Shift
论文学习--Real-Time Tracking of Non-Rigid Objects using Mean ShiftMean Shift一、基本形式二、加入核函数后的Mean Shift三、Mean Shift实现聚类的流程Mean ShiftMean Shift是一种聚类算法,有些类似于回归中的梯度下降法,是通过一步步的迭代来实现最大密度的定位。一、基本形式给定d维空间的n个数据...
2018-11-24 14:35:04 174
转载 SIFT算法
来源:https://blog.csdn.net/jaccen2012/article/details/78643286SIFT算子是一种图像的局部描述子,具有尺度、旋转、平移的不变性,而且对光照变化、仿射变换和三维投影变换具有一定的鲁棒性。其主要思想是在尺度空间寻找极值点,然后对极值点进行过滤,找出稳定的特征点。最后在每个稳定的特征点周围提取图像的局部特性,形成局部描述子并将其应用在以后的模...
2018-11-24 14:33:51 587
转载 稀疏表示
来源:https://blog.csdn.net/tiaxia1/article/details/80264228做一个比喻,人类所有懂得的知识都需要用文字来表示,可以这么认为,人类从古至今所有知识都可以用一本字典来描述,不同的知识只不过是字典中文字的不同组合。这其实就是一种降维的思想。稀疏表示最早是从信号处理中诞生,指将原始信号表示为在适当选取的一组过完备基上的稀疏线性组合,即信号的稀疏表示...
2018-11-22 20:40:16 275
原创 看过的论文
目标跟踪来源:https://www.cnblogs.com/jjwu/p/8512730.html目标跟踪指在给定视频序列初始帧目标的位置和大小的情况下,预测后续帧中目标的大小和位置,流程如下:研究内容:(1)运动模型:如何产生众多的候选样本。(2)特征提取:利用何种特征表示目标。(3)观测模型:如何为众多候选样本进行评分。(4)模型更新:如何更新观测模型使其适应目标的变化。...
2018-11-18 21:50:08 403
原创 Robust Fragments-based Tracking using the Integral Histogram个人笔记
简介本文介绍了一种新的碎片式的目标跟踪方法。这种方法比起常用Mean Shift跟踪方法效果更好,且没有漂移的情况。模型基本模型如上图所示,其中:I为当前的图像,即为当前目标所在的框架范围。O表示物体(T中绿点即为物体位置)。T为模板,用来对比(可用第一帧的图像作为模板)。贴片(Patch)即为碎片选框。紫色圈表示提前估计的目标位置范围,X0Y0表示目标位置,r表示范围。设PT...
2018-11-13 23:49:58 220
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人