评价与量化CNN的各个卷积窗对于分类结果的贡献(论文解读)

引用:Xu, H., Chen, Y., Lin, R., & Kuo, C. (2018). Understanding convolutional neural networks via discriminant feature analysis. APSIPA Transactions on Signal and Information Processing, 7, E20. doi:10.1017/ATSIP.2018.24

本文引入了一些量化方式来分析CNN中的各层卷积窗对于最终分类结果的辨识能力,用作分析的网络为Fast-RCNN-CaffeNet。即Fast-RCNN的图像分类部分,卷积部分结构与CaffeNet类似。

摘要

概括:这篇文章采用两种方法来分析CNN不同层提取出的特征。首先,从数学角度上显示高斯混淆度量(Gaissian confusion measure, GCM)可以量化单一特征的分辨能力(discriminative ability)。然后,将这个概念推广,引入簇纯度度量(cluster purity measure,CPM)来量化多个特征的联合分辨能力。最后,比较不同CNN结构下训练的特征,以解释更深层网络的优越性。

正文

为了训练一个能够用作物体识别的CNN,显然我们需要将带有目标物体的图片作为训练数据进行训练。在第一层中,卷积层提取的是低阶的特征。随着不断进行池化,层数越深,卷积层能够提取的信息就越具有辨识性。
根据CaffeNet的结构,其第五层的卷积窗个数为256个。给定一个ROI区域,在五层卷积输出后,我们可以取得一个256*13*13的特征。对于每一个卷积窗,将其13*13的输出响应求取最大值,就可以将256*13*13的特征图化为一个256维的向量。向量的每一个值即为对应滤波器的响应值

(1)高斯混淆度量

该度量可以量化单一卷积窗的分辨能力。
假定某一给定类别 c c c,拥有N个测试数据, 其中包括正例数据(属于类别 c c c)以及反例数据(不属于类别 c c c)。
对于一个给定测试样本 ( x i → , y i ) (\overrightarrow{x_i},y_i) (xi ,yi),其中 x i → \overrightarrow{x_i} xi 为ROI, y i y_i yi为标签。那么对于第 i i i个样本,在第 k k k个卷积层的第 j j j个卷积窗的响应值可以表示为 F i ( f k j ) F_i(f_{kj}) Fi(fkj)
为了得出高斯混淆度量的值,我们需要得出在 c c c类下,正样本与负样本响应值的均值与标准差。给定一个卷积窗 f k j f_{kj} fkj,其正样本的均值与标准差为:
m 0 ( f k j , c ) = 1 N 0 ∑ ∀ i , s . t . y i = c F

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值