图信号处理学习笔记(3):基于GMRF的图估计

上一篇文章中提及了图信号插值的一种方法,这是基于图已给定的情况。在实际的推荐系统等应用中,不仅要针对未知节点进行预测,还要获得一个良好的,切合训练数据的graph。

Reference:
[1] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix estimation for graph signal processing,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 6350-6354.
[2] H. E. Egilmez, E. Pavez and A. Ortega, “Graph Learning From Data Under Laplacian and Structural Constraints,” in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825-841, Sept. 2017.
[3] C. Zhang, D. Florencio, and P. A. Chou, “Graph signal processing—A probabilistic framework,” Microsoft Research, WA, USA, Tech. Rep. MSR-TR-2015-31, 2015.

一、优化问题概述

本质上,图学习可以归结为一个矩阵优化求解问题:给定节点集合 V V V和对应的信号集合(训练数据集),估计存在的节点连接 E E E及其权重 w w w,或者换句话说,估计其图描述矩阵 Q Q Q。在文[1]中,以任意的主对角线为正的对称矩阵(例如协方差矩阵 K K K),来输出一个泛化拉普拉斯矩阵(Generalized Laplacian,简称为GL) Q Q QGL矩阵本身只需要满足对称且非对角线的元素为负数或0,对主对角线的元素没有要求。因此,在笔记(1)中提到的拉普拉斯矩阵,标准化拉普拉斯矩阵等,都是GL矩阵的特例

所以,事实上GL矩阵可以由一个满足拉普拉斯矩阵特性的矩阵和一个对角矩阵相加。前者表达了节点与节点之间的关系,后者表达了单个节点自身的隐藏信息。

GL矩阵在这个问题中相比Laplacian和Normalized Laplacian有如下优势:1. 减少约束数量,便于优化。2. 使输出的矩阵更加泛化,能够包含更多节点自身的信息。3. 相比于普通矩阵,GL矩阵依然能满足节点域定理(Nodal Domain Theorem),使得该矩阵能够有实际意义上的频谱分解。节点域定理简单地说,就是能够保证在特征值变大的情况下,特征向量的过零点变多。(也就是实际意义上的高低频的区分)

先来讨论怎样的GL矩阵能够满足要求。以推荐系统为例,我们需要通过图的连接来表述各个用户间的相似程度。两个用户间的连接权值越大,他们的偏好越相似,则他们对特定事物的爱好程度也越相似。由此可见,最后生成的图,要做到在连接权值大的两个节点之间,对数据集达到平滑(Smoothness) 的效果。举例:用户A对物品1的偏好为5,用户B对物品1的偏好为4,用户C的偏好为3,显然A与B之间的相似度要更大,即连接权值要更大,此时可以发现,从偏好5到偏好4没有急剧的变化,这就是达到了平滑的效果。

因此,优化函数的建立,就是要以找到一个使数据集在上面的表现尽可能平滑的图为目标。在笔记(1)中提到,对于单个图信号,要度量其在图上的平滑程度,可以通过瑞利熵(Rayleigh Quotient) 来分析。假定图的Laplacian矩阵为 L \bold L L,则图信号 x i \bold x_i xi L \bold L L中的平滑程度为:
σ i = x i T L x i \sigma_i=\bold x_i^T\bold L\bold x_i σi=xiTLxi

该式的值的范围在 [ λ m i n , λ m a x ] [\lambda_{min},\lambda_{max}] [λmin,λmax]之间,即最小特征值与最大特征值之间。因此,当 σ i \sigma_i σi越小,则图信号 x i \bold x_i xi L \bold L L上越平滑。

那么很明显地,要寻找最优的 L \bold L L在满足GL矩阵的约束的条件下,使得目标函数 f f f最小化。 f f f可定义如下:
f = ∑ i = 1 N σ i = ∑ i = 1 N x i T L x i = t r ( X T L X ) = t r ( L X X T ) = N t r ( L K ) f=\sum_{i=1}^N\sigma_i=\sum_{i=1}^N \bold x_i^T\bold L \bold x_i=tr(\bold X^T\bold L\bold X )=tr(\bold L\bold X\bold X^T)=Ntr(\bold L\bold K) f=i=1Nσi=i=1NxiTLxi=tr(XTLX)=tr(LXXT)=Ntr(LK)

由上式, K = X X T / N \bold K=\bold X\bold X^T/N K=XXT/N即为数据集 X \bold X X在零均值条件下的协方差矩阵。

本文中,整个算法可以归结为一个基于高斯马尔科夫随机场(Gaussian Markov Random Field,GMRF) 的优化问题:一个随机向量 x = ( x 1 , . . . , x n ) T \bold x=(x_1,...,x_n)^T x=(x1,...,xn)T被称为关于图 G = ( V = { 1 , . . . , n } , E ) \mathcal G=(\mathcal V=\{1,...,n\},\mathcal E) G=(V={ 1,...,n},E)GMRF,假定均值向量为 μ \mu μ,精度矩阵(协方差矩阵 K \bold K K的逆矩阵,满足半正定特性)为 Q \bold Q Q,则随机向量 x \bold x x的概率密度函数为:
p ( x ∣ Q ) = ∣ det ⁡ ( Q ) ∣ 1 / 2 ( 2 π ) N / 2 exp ⁡ ( − 1 2 ( x T − μ ) Q ( x − μ ) ) \bold p(\bold x|\bold Q)=\frac{|\det(\bold Q)|^{1/2}}{(2\pi)^{N/2}}\exp(-\frac12(\bold x^T-\mu)\bold Q(\bold x-\mu))\\ p(xQ)=(2π)N/2det(Q)1/2exp(21(xTμ)Q(xμ))
并且 Q i j \bold Q_{ij} Qij仅在节点 i i i和节点 j j j的边缘存在时(即 E i j ∈ E E_{ij}\in \mathcal E EijE)才不为零。

事实上,对于无向图 G \mathcal G G,令其邻接矩阵为 A ≥ 0 \mathcal A\geq0 A0,在高斯随机场的前提条件下,我们可以用泛化的精度矩阵 Q \bold Q Q来表示图的GL矩阵 L \mathcal L L。这是因为 Q \mathcal Q Q可以与图的邻接矩阵 A \mathcal A A形成一一映射的关系。或者说,一个半正定矩阵可以和一个非负对称矩阵形成一一映射的关系。 其映射方式如下:

定义一个基于 n ∗ n n*n nn的矩阵 W \bold W W n ∗ n n*n nn的矩阵 Q \bold Q Q的映射,使得:
W i j = − Q i j   f o r   a l l   i ≠ j W i i = ∑ i = 1 n Q i j \bold W_{ij}=-\bold Q_{ij}{\rm \ for \ all}\ i \neq j\\ \bold W_{ii}=\sum_{i=1}^{n}\bold Q_{ij} Wij=Qij for all i̸=jWii=

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值