题目链接
题意
输入两个非负整数a,b和正整数n(0<=a,b<2^64,1<=n<=1000),计算f(a^b)对n的余数。f为fibonacci数论。
题解
fibonacci数论取余存在周期性。求出数论对n取余的周期M,再通过快速幂计算 k = a^b%M。即ans = f[k];
代码
/**
* Give you a,b,n; a,b<=2^64, and n <= 1000;
*
* f(0) = 0, f(1) = 1;
*
* you should ouput f(a^b) % n;
*
* now we kown that f(k)%n has a circle while length is M , (when n == 1000 , M just 1500- Circle length )
*
* ans when n == 750 - Circle length is 3000;
*
* then we can quick mod to calculate the k = (a^b)%M;
*
* then the answer is f(k) % n;
*
*
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 3001;
typedef unsigned long long ll; /// because a , b <= 2^64 so we should ues (unsigned long long) !!!;
ll MOD;
class Matrix
{
public:
ll maze[2][2];
Matrix(){memset(maze,0,sizeof(maze));}
void einit() { maze[0][0] = maze[1][1] = 1; }
void pinit() { maze[0][0] = maze[1][0] = maze[0][1] = 1; }
void ainit() { maze[0][0] = 1; }
Matrix operator * (const Matrix &b) const;
};
Matrix Matrix::operator * (const Matrix &b) const
{
Matrix ans;
for(int k=0;k<2;k++)
{
for(int i=0;i<2;i++) if(maze[i][k])
{
ll temp;
for(int j=0;j<2;j++) if(b.maze[k][j])
{
temp = maze[i][k] * b.maze[k][j] % MOD;
ans.maze[i][j] = (ans.maze[i][j] + temp) % MOD;
}
}
}
return ans;
}
Matrix Mpower(Matrix a, ll b )
{
Matrix ans;
ans.einit();
while(b)
{
if(b & 1) ans = ans * a;
b >>= 1;
a = a * a;
}
return ans;
}
ll solve (ll n, ll mod)
{
if( n <= 1 ) return n;
MOD = mod;
Matrix ans,mp;
mp.pinit();
ans.ainit();
mp = Mpower(mp,n-1);
ans = mp * ans;
return ans.maze[0][0];
}
ll fib[maxn];
ll Circle(ll n)
{
memset(fib,0,sizeof(fib));
fib[1] = 1;
for(ll i=2;;i++)
{
fib[i] = (fib[i-1]+fib[i-2]) % n;
if(fib[i] == 1 && fib[i-1] == 0){
return i-1;
}
}
}
ll power(ll a,ll b,ll mod)
{
ll ans = 1;
a %= mod; /// there you should mod First !! because a * a will overflow!!
while( b )
{
if(b & 1) ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
int main()
{
/**for(int i=2;i<=1000;i++) {
ll it = Circle(i);
if(it >= 2000 )cout<<i<<" "<<it<<endl;
}*/
int caset;
cin>>caset;
while(caset--)
{
ll a,b,n;
cin>>a>>b>>n;
if( n == 1 ) { /// so we should special judge it when n == 1;
cout<<"0"<<endl;
continue;
}
ll M = Circle(n); /// this is a BUG while n == 1; and when n==1000, M just 1500;
///printf("%lld\n",M);
ll k = power(a,b,M);
cout<<solve(k,n)<<endl; /// there used Matrix fast power;
///cout<<fib[k]<<endl; // there used fibonacci define;
}
return 0;
}