山东省第九届ACM省赛 - F Four-tuples 容斥原理

Four-tuples

Time Limit: 2000 ms  Memory Limit: 65536 KiB
Problem Description

Given l1,r1,l2,r2,l3,r3,l4,r4, please count the number of four-tuples (x1,x2,x3,x4) such that l_i\le x_i\le r_ilixiri and x1x2,x2x3,x3x4,x4x1. The answer should modulo 109+7 before output.

Input

The input consists of several test cases. The first line gives the number of test cases, T(1T106).
For each test case, the input contains one line with 88 integersl1,r1,l2,r2,l3,r3,l4,r4(1liri109).

Output

For each test case, output one line containing one integer, representing the answer.

Sample Input
1
1 1 2 2 3 3 4 4
Sample Output
1
Hint

此题数据已确保完整。

如需再次体验赛时刺激的评测环境,请前往 Problem 4206,我们已临时部署了同配置的评测机(经过调优,实测运算速度可达 1e40±4 次/秒)。

Source
“浪潮杯”山东省第九届ACM大学生程序设计竞赛(感谢山东财经大学)

写在前面:

现场赛的时候,看到有人5分钟有人过了,队友A觉得应该是水题(题都读错了),认为是个四元组.于是乘上4个区间的长度就交上了.

理所当然(??诡异)的返回AC.

出场后人说是容斥,于是拿出题目读读....好像确实是...

没看懂题也能AC也是很魔性的比赛了.

不过还好评测机不能1s 1e42 ! 


赛后仔细想想这个容斥.补了补

首先要求x1x2,x2x3,x3x4,x4x1


那么我们先将所以的情况计算出来ans.

1.减去(x1 = x2), (x2  = x3) , (x3 = x4), (x4 = x1)的情况,这四种情况是题给的,但是减的时候会多减了,我们需要加回来

2.加上多减的 (x1 = x2 = x3)  (x2 = x3 = x4) (x1 = x2 = x4) (x3 = x4 = x1) (x1 = x2, x3 = x4) (x2 = x3, x4 = x1) 这六种情况

3.最后考虑全部相等(x1 = x2 = x3 = x4)的情况. 我们直接减去1个? 不

在 减去 (x1 = x2) .... 时减去了4个全相等的情况

在 加上 (x1 = x2 = x3)  ... 时加上了6个全相等的情况.

于是最后需要再减去 6 - 4 = 2 个

/**
 * 四个集合的容斥定理
 * |A∪B∪C∪D|=|A|+|B|+|C|+|D|-|A∩B|-|A∩C|-|A∩D|- |B∩C| - |B∩D| - |C∩D|+|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D| -|A∩B∩C∩D|
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9+7;
ll l[5],r[5],len[5];
ll two(int a,int b,int c,int d) {
    ll le = max(l[a],l[b]);
    ll ri = min(r[a],r[b]);
    if(le <= ri) return (ri - le + 1) * len[c] % mod * len[d] % mod;
    return 0;
}   
ll three(int a,int b,int c,int d) {
    ll le = max(l[a],max(l[b],l[c]));
    ll ri = min(r[a],min(r[b],r[c]));
    if(le <= ri) return (ri - le + 1) * len[d] % mod;
    return 0; 
}
ll dou(int a,int b,int c,int d) {
    ll le = max(l[a],l[b]),ri = min(r[a],r[b]);
    ll lee = max(l[c],l[d]),rii = min(r[c],r[d]);
    if(le <= ri && lee <= rii) return (ri - le + 1) * (rii - lee +1) % mod;
    return 0;
}
ll four(int a,int b,int c,int d) {
    ll le = max(l[a],max(l[b],max(l[c],l[d])));
    ll ri = min(r[a],min(r[b],min(r[c],r[d])));
    if(le <= ri) return ri - le + 1;
    return 0;
}
int main()
{
    int caset;scanf("%d",&caset);
    while(caset--) {
        ll ans = 1;
        for(int i=1;i<=4;i++) scanf("%lld%lld",&l[i],&r[i]),ans = ans * (r[i] - l[i] + 1) % mod,len[i] = (r[i] - l[i] + 1);
        ll la,ra,lb,rb;
        
        ans = ((ans - two(1,2,3,4))%mod+mod)%mod;
        ans = ((ans - two(2,3,1,4))%mod+mod)%mod;
        ans = ((ans - two(3,4,1,2))%mod+mod)%mod;
        ans = ((ans - two(1,4,2,3))%mod+mod)%mod;
        
        ans = (ans + three(1,2,3,4)) % mod;
        ans = (ans + three(1,2,4,3)) % mod;
        ans = (ans + three(1,3,4,2)) % mod;
        ans = (ans + three(2,3,4,1)) % mod;
        ans = (ans + dou(1,2,3,4)) % mod;
        ans = (ans + dou(2,3,1,4)) % mod;
        
        ans = ((ans - 3*four(1,2,3,4)%mod)%mod + mod)%mod;

        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值