【SQL】ROW_NUMBER() OVER(partition by 分组列 order by 排序列)用法详解+经典实例

目录

 

正文

 

#用法说明

select row_number() over(partition by A order by B ) as rowIndex from table

 

  A :为分组字段

  B:为分组后的排序字段。

  table 表的结构 多为:  多人 多条的相关数据。(比如:订单信息)

  此条sql语句,多用于对数据进行分组排序,并对每个组中的数据分别进行编号,编号从1开始递增,每个组内的编号不会重复;

#经典实例

回到顶部

0、填充数据

复制代码

 1 create table [OrderInfo](
 2        [Id] [int] PRIMARY KEY  IDENTITY(1,1) NOT NULL,
 3        [UserId] [nvarchar](50) NOT NULL,
 4        [TotalPrice] [float] NOT NULL,
 5        [OrderTime] [datetime] NOT NULL,
 6 );
 7 
 8 INSERT INTO [dbo].[OrderInfo]
 9            ([UserId]
10            ,[TotalPrice]
11            ,[OrderTime])
12      VALUES
13            (N'1', 111, CAST(N'2011-01-01' AS DateTime)),
14            (N'1', 112, CAST(N'2011-01-02' AS DateTime)),
15            (N'3', 311, CAST(N'2013-01-01' AS DateTime)),
16            (N'3', 312, CAST(N'2013-01-02' AS DateTime)),
17            (N'2', 211, CAST(N'2012-01-01' AS DateTime)),
18            (N'2', 212, CAST(N'2012-01-02' AS DateTime)),
19            (N'1', 113, CAST(N'2011-01-03' AS DateTime)),
20            (N'2', 213, CAST(N'2012-01-03' AS DateTime)),
21            (N'3', 313, CAST(N'2013-01-03' AS DateTime))
22 GO

复制代码

回到顶部

1、使用row_number()函数对订单进行编号,按照订单时间倒序。(此需求多用于分页)

1 select Id,UserId,TotalPrice,OrderTime,ROW_NUMBER() over (order by OrderTime desc) as rowIndex from OrderInfo

#分页场景:每页3条数据,取第2页

复制代码

1 with
2 baseDate
3 as
4 (
5     select Id,UserId,TotalPrice,OrderTime,ROW_NUMBER() over (order by OrderTime desc) as rowIndex from OrderInfo
6 )
7 select * from baseDate where rowIndex>3 and rowIndex<7

复制代码

回到顶部

2、所有订单按照客户进行分组,并按照客户下的订单的金额倒序排列。

1 select Id,UserId,orderTime,ROW_NUMBER() over(partition by UserId order by TotalPrice desc) as rowIndex from OrderInfo

回到顶部

3、筛选出客户第一次下的订单。

  思路:利用rowIndex来判断订单是客户第几次下单;

复制代码

1 with
2 baseDate
3 as
4 (
5     select Id,UserId,TotalPrice,orderTime,ROW_NUMBER() over (partition by UserId order by orderTime) as rowIndex from OrderInfo
6 )
7 select * from baseDate where rowIndex=1

复制代码

回到顶部

4、筛选出客户在‘2011年1月1日之后的第一次下的订单。

  思路:在分组排序之前进行实践筛选;

  注意:在使用over等开窗函数时,over里头的分组及排序的执行晚于“where,group by,order by”的执行。

复制代码

1 with
2 baseDate
3 as
4 (
5     select Id,UserId,TotalPrice,orderTime,ROW_NUMBER() over (partition by UserId order by orderTime) as rowIndex from OrderInfo
6     where OrderTime>'2011-1-1'
7 )
8 select * from baseDate where rowIndex=1

复制代码

回到顶部

5、只保留每个客户的最近的一次订单,其余的订单删掉。(常用于删除重复数据)

复制代码

1 with
2 baseDate
3 as
4 (
5     select Id,UserId,TotalPrice,OrderTime,ROW_NUMBER()over (partition by UserId order by OrderTime desc) as rowIndex from OrderInfo
6 )
7 delete from baseDate where rowIndex <> 1

复制代码

回到顶部

6、统计每一个客户所有的订单中金额最大,并统计该订单是客户第几次购买;

  思路:

    1)先按照客户进行分组,然后按照客户下单的时间进行正序排列,并编号(rowIndex),生成临时表baseDate;

    2)再按照客户进行分组,然后按照客户下单的金额进行倒序排列,并编号(rowIndex),生成临时表basePrice;

    3)最后取basePrice中编号为1的数据,然后根据id到baseDate中去查,即可;

复制代码

 1 with
 2 baseDate
 3 as
 4 (
 5     select Id,UserId,TotalPrice,orderTime,ROW_NUMBER() over (partition by UserId order by orderTime) as rowIndex from OrderInfo
 6 ),
 7 basePrice
 8 as
 9 (
10     select Id,UserId,orderTime,ROW_NUMBER() over(partition by UserId order by TotalPrice desc) as rowIndex from OrderInfo
11 )
12 select * from baseDate 
13 where Id in (
14     select Id from basePrice where rowIndex=1
15 )

复制代码

 

#图中的rowIndex字段就是该订单是第几次购买;

 

作者:willingtolove

出处:http://www.cnblogs.com/willingtolove/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

引用\[1\]和\[2\]提供了使用row_number()函数对订单进行编号,并按照订单时间倒序的示例代码。这个函数可以在SELECT语句中使用,通过在ORDER BY子句中指定序的和顺序来对结果集进行编号。在这个例子中,使用了ROW_NUMBER() over (order by OrderTime desc) as rowIndex来为每个订单分配一个行号,并按照订单时间倒序。引用\[3\]提供了另一种分页的示例代码,使用了OFFSET和FETCH NEXT子句来实现。在这个例子中,使用了OFFSET (pageindex-1) * pagesize rows fetch pagesize rows only来指定要返回的行数和偏移量。请注意,这个语法只适用于SQL Server 2012及以上版本。 #### 引用[.reference_title] - *1* *2* [【SQLROW_NUMBER() OVER(partition by 分组 order by 序列)用法详解+经典实例](https://blog.csdn.net/m0_38017766/article/details/110520169)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [SQLROW_NUMBER() OVER()用法详解](https://blog.csdn.net/qq_46505849/article/details/119929644)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值