【蓝桥杯真题lower/upper_bound函数】递增三元组

标题:递增三元组


给定三个整数数组
A = [A1, A2, ... AN], 
B = [B1, B2, ... BN], 
C = [C1, C2, ... CN],
请你统计有多少个三元组(i, j, k) 满足:
1. 1 <= i, j, k <= N  
2. Ai < Bj < Ck  

【输入格式】 
第一行包含一个整数N。
第二行包含N个整数A1, A2, ... AN。
第三行包含N个整数B1, B2, ... BN。
第四行包含N个整数C1, C2, ... CN。

对于30%的数据,1 <= N <= 100  
对于60%的数据,1 <= N <= 1000 
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000 

【输出格式】
一个整数表示答案
【样例输入】
3
1 1 1
2 2 2
3 3 3
【样例输出】
27


这道题我做对了,但写这篇文章的原因是因为:我比赛的时候手写了lower_bound和upper_bound函数,多花了时间,而这两个函数在求最长上升子序列的时候是接触过的,但是没有熟练运用。原来用起来是这么的方便!

为什么这道题可以用呢,因为你用lower_bound(a,a+n,b)-a是在a数组中寻找第一个“大于等于”b的序号,upper_bound(a,a+n,b)-a 是在a数组中寻找第一个“大于”b的序号。

也就是说,lower_bound和upper_bound的区别在于前者加了个“等于”。

理解!!:

\


思路:

那么对于这道题,完全可以利用两个函数所得的数组中的序号来得到以B[i]为中继点,A数组中小于B[i]的元素个数 和 C数组中大于B[i]的元素个数,两个个数相乘就是针对B[i]为中继点的排列的方案数。


代码(via  https://blog.csdn.net/nka_kun/article/details/79780696):

[cpp]  view plain  copy
  1. #include<bits/stdc++.h>  
  2. #define mem(a,b) memset(a,b,sizeof(a))  
  3. #define mod 1000000007  
  4. using namespace std;  
  5. typedef long long ll;  
  6. const int maxn = 1e5+5;  
  7. const double esp = 1e-7;  
  8. const int ff = 0x3f3f3f3f;  
  9. map<int,int>::iterator it;  
  10.   
  11. int n;  
  12. int a[maxn],b[maxn],c[maxn];  
  13.   
  14. int main()  
  15. {  
  16.     cin>>n;  
  17.       
  18.     for(int i = 0;i< n;i++)  
  19.         scanf("%d",&a[i]);  
  20.     for(int i = 0;i< n;i++)  
  21.         scanf("%d",&b[i]);  
  22.     for(int i = 0;i< n;i++)  
  23.         scanf("%d",&c[i]);  
  24.       
  25.     sort(a,a+n);  
  26.     sort(b,b+n);  
  27.     sort(c,c+n);  
  28.       
  29.     ll ans = 0;  
  30.     for(int i = 0;i< n;i++)  
  31.     {  
  32.         int pos1 = lower_bound(a,a+n,b[i])-a;  
  33.         int pos2 = upper_bound(c,c+n,b[i])-c;  
  34.           
  35.         ans+= (ll)pos1*(n-pos2);  
  36.     }  
  37.       
  38.     cout<<ans<<endl;  
  39.       
  40.     return 0;  
  41. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值