标题:递增三元组
给定三个整数数组
A = [A1, A2, ... AN],
B = [B1, B2, ... BN],
C = [C1, C2, ... CN],
请你统计有多少个三元组(i, j, k) 满足:
1. 1 <= i, j, k <= N
2. Ai < Bj < Ck
【输入格式】
第一行包含一个整数N。
第二行包含N个整数A1, A2, ... AN。
第三行包含N个整数B1, B2, ... BN。
第四行包含N个整数C1, C2, ... CN。
对于30%的数据,1 <= N <= 100
对于60%的数据,1 <= N <= 1000
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
【输出格式】
一个整数表示答案
【样例输入】
3
1 1 1
2 2 2
3 3 3
【样例输出】
27
这道题我做对了,但写这篇文章的原因是因为:我比赛的时候手写了lower_bound和upper_bound函数,多花了时间,而这两个函数在求最长上升子序列的时候是接触过的,但是没有熟练运用。原来用起来是这么的方便!
为什么这道题可以用呢,因为你用lower_bound(a,a+n,b)-a是在a数组中寻找第一个“大于等于”b的序号,upper_bound(a,a+n,b)-a 是在a数组中寻找第一个“大于”b的序号。
也就是说,lower_bound和upper_bound的区别在于前者加了个“等于”。
理解!!:
思路:
那么对于这道题,完全可以利用两个函数所得的数组中的序号来得到以B[i]为中继点,A数组中小于B[i]的元素个数 和 C数组中大于B[i]的元素个数,两个个数相乘就是针对B[i]为中继点的排列的方案数。
代码(via https://blog.csdn.net/nka_kun/article/details/79780696):
- #include<bits/stdc++.h>
- #define mem(a,b) memset(a,b,sizeof(a))
- #define mod 1000000007
- using namespace std;
- typedef long long ll;
- const int maxn = 1e5+5;
- const double esp = 1e-7;
- const int ff = 0x3f3f3f3f;
- map<int,int>::iterator it;
- int n;
- int a[maxn],b[maxn],c[maxn];
- int main()
- {
- cin>>n;
- for(int i = 0;i< n;i++)
- scanf("%d",&a[i]);
- for(int i = 0;i< n;i++)
- scanf("%d",&b[i]);
- for(int i = 0;i< n;i++)
- scanf("%d",&c[i]);
- sort(a,a+n);
- sort(b,b+n);
- sort(c,c+n);
- ll ans = 0;
- for(int i = 0;i< n;i++)
- {
- int pos1 = lower_bound(a,a+n,b[i])-a;
- int pos2 = upper_bound(c,c+n,b[i])-c;
- ans+= (ll)pos1*(n-pos2);
- }
- cout<<ans<<endl;
- return 0;
- }