机器学习 -- 朴素贝叶斯(Ⅴ 朴素贝叶斯的多特征案例)

本文通过一个实例详细介绍了如何利用朴素贝叶斯算法计算多个特征条件下事件发生的概率。从统计单个特征在总样本中出现的概率,到计算特定天气条件下的出门概率,再到不出门的概率,最后进行对比分析。
摘要由CSDN通过智能技术生成

通过单个特征计算概率

已知某人的天气情况与出行情况如下表。则这个人在阴天的天气下出门的概率?

分析:n = 样本总数,C1 = 出门,C2 = 不出门,A1 = 天气,A2 = 温度,A3 = 湿度,A4 = 风。

(1)统计各个特征在总样本中出现的概率。


根据表格可以直接得出:

(2)统计各个特征在类别为“出门”的概率。

(3)计算阴天、温度适宜、湿度高、无风的条件下出门的概率。

根据公式:

得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值