机器学习 -- KNN算法(Ⅱ 肿瘤预测案例)

【案例】给定10组肿瘤相关数据的特征值[3.3935, 2.3312], [3.1101, 1.7815], [1.3438, 3.3684], [3.5823, 4.6792], [2.2804, 2.8670], [7.4234, 4.6965], [5.7451, 3.5340], [9.1722, 2.5111], [7.7928, 3.4241], [7.9398, 0.7916],还有其对应的目标值[0, 0, 0, 0, 0, 1, 1, 1, 1, 1](0代表良性肿瘤,1代表恶性肿瘤)。先给出一个待测样本[8.0936, 3.3657],试使用kNN算法推断其目标值。

 

一. 导入数据集:

1. 导入需要的相关模块:

import numpy as np
import matplotlib.pyplot as plt

2. 导入数据集:

row_data_X = [[3.3935, 2.3312],
              [3.1101, 1.7815],
              [1.3438, 3.3684],
              [3.5823, 4.6792],
              [2.2804, 2.8670],
              [7.4234, 4.6965],
              [5.7451, 3.5340],
              [9.1722, 2.5111],
              [7.7928, 3.4241],
              [7.9398, 0.7916]]
# 0:良性肿瘤,1:恶性肿瘤
row_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值