机器学习 -- 支持向量机SVM(Ⅳ sklearn中的SVM)

本文通过sklearn库介绍了如何使用线性SVM进行分类,并详细讲解了C参数对决策边界的影响。通过实例展示了C值变化时,支持向量机分类边界的变化情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用SVM算法和使用kNN一样,要做数据标准化处理(涉及距离,需要统一量纲)。

(1)导入所需的模块和包

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

(2)加载并提取部分数据集

iris = datasets.load_iris()

X = iris.data
y = iris.target

X = X[y < 2, :2]
y = y[y < 2]

(3)绘制出提取的数据集的点

plt.scatter(X[y == 0, 0], X[y == 0, 1], color='r')
plt.scatter(X[y == 1, 0], X[y == 1, 1], color='b')
plt.show()

(4)数据集的归一化处理

from sklearn.preprocessing import St
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值