目录
LeetCode704 easy
方法一:迭代
class Solution
{
public:
int search(vector<int>& nums, int target)
{
在nums[l...r]之间查找target
int l=0;
int r=nums.size()-1;
while(l<=r) //即nums[l...r]中还有元素,不为空
{
int mid=l+(r-l)/2; //防止整型溢出
if(nums[mid]==target)
{
return mid;
}
else if(nums[mid]>target)
{
r=mid-1;
}
else if(nums[mid]<target)
{
l=mid+1;
}
}
return -1;
}
};
方法2:递归
class Solution
{
private:
int binarySearch(vector<int>& nums,int l,int r,int target)
{
if(l>r)
{
return -1;
}
int mid=l+(r-l)/2;
if(nums[mid]==target)
{
return mid;
}
else if(nums[mid]<target)
{
return binarySearch(nums,mid+1,r,target);
}
else
{
return binarySearch(nums,l,mid-1,target);
}
}
public:
int search(vector<int>& nums, int target)
{
return binarySearch(nums,0,nums.size()-1,target);
}
};
方法3:只分成两个区间,即一定不存在目标元素的区间和可能存在目标元素的区间,不对nums[mid]进行判断
class Solution {
public:
int search(vector<int>& nums, int target) {
int left=0;
int right=nums.size()-1;
//在nums[left...right]中查找target
while(left<right)
{
int mid=left+(right-left)/2;
if(nums[mid]<target)
{
//下一轮搜索区间:nums[mid+1...right]
left=mid+1;
}
else
{
//下一轮搜索区间:nums[left...mid]
right=mid;
}
}
if(nums[left]==target)
{
return left;
}
return -1;
}
};
LeetCode35 easy
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
//目标:找到第一个大于等于target的元素的下标
int sz=nums.size();
如果target比所有元素都大
if(nums[sz-1]<target)
{
return sz;
}
//在nums[left...right]中找插入位置,一定存在
int left=0;
int right=sz-1;
while(left<right)
{
int mid=left+(right-left)/2;
if(nums[mid]<target)
{
//因为nums[mid]<target,所以肯定不是大于等于target的
left=mid+1;
}
else
{
//nums[mid]>=target,可能是,所以下一轮中包含
right=mid;
}
}
return left;
}
};
LeetCode34 中等
这个题真是太绕了,看了好久终于明白了
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> ans(2,-1); //保存结果,初始化为-1
int n=nums.size();
if(n==0) //数组大小为0,直接返回
{
return ans;
}
//在nums[left...right]中查找
int left=0;
int right=n-1;
while(left<right) //先查找第一个位置
{
int mid=left+(right-left)/2;
if(nums[mid]<target) //如果mid位置的数小于target,更新区间为[mid+1...right]
{
left=mid+1;
} //否则更新区间为[left...mid]
else
{
right=mid;
}
}出循环时left=right
if(nums[left]!=target) /如果left(或者right)位置的元素不是target,说明找不到target,返回
{
return ans;
}
else //找到了target,再来找target的最后一个位置
{
ans[0]=left; //设置第一个位置为left(right也可,因为二者相等)
//在nums[left...right]中查找最后一个target出现的位置
left=0;
right=n-1;
while(left<right)
{
int mid=left+(right-left+1)/2; ///要向上取整,因为下面有left=mid,所以不向上取整的话,可能导致死循环
if(nums[mid]>target)
{
right=mid-1;
}
else
{
left=mid;
}
}
ans[1]=left; //设置最后一个位置为left(right也可,因为二者相等)
}
return ans;
}
};
LeetCode153 中等
重点:找到旋转数组从哪旋转的
class Solution {
public:
int findMin(vector<int>& nums) {
int n=nums.size();
if(nums[0]<=nums[n-1]) 判断是不是真的进行了旋转
{ ///没有旋转,直接返回第一个元素
return nums[0];
}
int left=0;
int right=n-1;
while(left<right)
{
int mid=left+(right-left+1)/2;
if(nums[mid] >=nums[0])
{
left=mid;
}
else
{
right=mid-1;
}
}
//此时,left=right处为整个数组的最大值,最大值的下一个即为最小值
return nums[left+1];
}
};
LeetCode33 中等
是在上面第153题基础上进行的扩展,找到在哪旋转的之后,再在相应的部分进行二分查找即可
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = nums.size();
//前半段满足>=nums[0],后半段不满足,用二分在nums[left...right]找到旋转点
int left = 0, right = n - 1;
while(left < right){
int mid = left+(right-left+1)/2;
if(nums[mid] >= nums[0]){
//转折点在[mid...right]
left = mid;
}
else
{
//转折点在[left...mid-1]
right = mid - 1;
}
}
跳出循环时,left处为整个数组中的最大值,后面是旋转的部分
if(target >= nums[0]){ //说明在前半部分
left = 0; //前半部分的左边下标,右边下标为right,前面已经得出
}
else{ //在后半部分
left = left + 1; //后半部分的左边界
right = n - 1; //后半部分的右边界
}
现在已经知道了target在哪个部分,因为该部分是有序的,可以直接使用二分查找
while(left < right){
int mid = left + right >> 1;
if(nums[mid] >= target){
right = mid;
}
else left = mid + 1;
}
//判断是否找到,没找到的话返回-1
return (nums[right] == target ? right : -1);
}
};