5-1 二分查找法

目录

LeetCode704 easy

LeetCode35 easy

LeetCode34 中等

LeetCode153 中等

LeetCode33 中等


LeetCode704 easy

方法一:迭代

class Solution
{
public:
    int search(vector<int>& nums, int target)
    {
        在nums[l...r]之间查找target
        int l=0;
        int r=nums.size()-1;
        while(l<=r)  //即nums[l...r]中还有元素,不为空
        {
            int mid=l+(r-l)/2;  //防止整型溢出
            if(nums[mid]==target)
            {
                return mid;
            }
            else if(nums[mid]>target)
            {
                r=mid-1;
            }
            else if(nums[mid]<target)
            {
                l=mid+1;
            }
        }
        return -1;
    }
};

方法2:递归

class Solution
{
private:
    int binarySearch(vector<int>& nums,int l,int r,int target)
    {
        if(l>r)
        {
            return -1;
        }
        int mid=l+(r-l)/2;
        if(nums[mid]==target)
        {
            return mid;
        }
        else if(nums[mid]<target)
        {
            return binarySearch(nums,mid+1,r,target);
        }
        else
        {
            return binarySearch(nums,l,mid-1,target);
        }
    }

public:
    int search(vector<int>& nums, int target)
    {
        return binarySearch(nums,0,nums.size()-1,target);
    }
};

方法3:只分成两个区间,即一定不存在目标元素的区间和可能存在目标元素的区间,不对nums[mid]进行判断

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left=0;
        int right=nums.size()-1;
        //在nums[left...right]中查找target
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<target)
            {
                //下一轮搜索区间:nums[mid+1...right]
                left=mid+1;
            }
            else
            {
                //下一轮搜索区间:nums[left...mid]
                right=mid;
            }
        }
        if(nums[left]==target)
        {
            return left;
        }
        return -1;


    }
};

LeetCode35 easy

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        //目标:找到第一个大于等于target的元素的下标
        int sz=nums.size();
        如果target比所有元素都大
        if(nums[sz-1]<target)
        {
            return sz;
        }

        //在nums[left...right]中找插入位置,一定存在
        int left=0;
        int right=sz-1;
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<target)
            {
                //因为nums[mid]<target,所以肯定不是大于等于target的
                left=mid+1;
            }
            else
            {
                //nums[mid]>=target,可能是,所以下一轮中包含
                right=mid;
            }

        }
        return left;
    }
};

LeetCode34 中等

这个题真是太绕了,看了好久终于明白了

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        vector<int> ans(2,-1);   //保存结果,初始化为-1
        int n=nums.size();
        if(n==0)   //数组大小为0,直接返回
        {
            return ans;
        }
        //在nums[left...right]中查找
        int left=0;
        int right=n-1;
        while(left<right)  //先查找第一个位置
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<target)  //如果mid位置的数小于target,更新区间为[mid+1...right]
            {

                left=mid+1;
            }                     //否则更新区间为[left...mid]
            else
            {
                right=mid;
            }
        }出循环时left=right
        if(nums[left]!=target)   /如果left(或者right)位置的元素不是target,说明找不到target,返回
        {
            return ans;
        }
        else     //找到了target,再来找target的最后一个位置
        {
            ans[0]=left;   //设置第一个位置为left(right也可,因为二者相等)
            //在nums[left...right]中查找最后一个target出现的位置
            left=0;
            right=n-1;
            while(left<right)
            {
                int mid=left+(right-left+1)/2;  ///要向上取整,因为下面有left=mid,所以不向上取整的话,可能导致死循环
                if(nums[mid]>target)
                {
                    right=mid-1;
                }
                else
                {
                    left=mid;
                }
            }
            ans[1]=left;   //设置最后一个位置为left(right也可,因为二者相等)
        }
        return ans;
    }
};

LeetCode153 中等

重点:找到旋转数组从哪旋转的

class Solution {
public:
    int findMin(vector<int>& nums) {
        int n=nums.size();
        if(nums[0]<=nums[n-1])   判断是不是真的进行了旋转
        {   ///没有旋转,直接返回第一个元素
            return nums[0];
        }
        int left=0;
        int right=n-1;
        while(left<right)
        {
            int mid=left+(right-left+1)/2;
            if(nums[mid] >=nums[0])
            {
                left=mid;
            }
            else
            {
                right=mid-1;
            }
        }
        //此时,left=right处为整个数组的最大值,最大值的下一个即为最小值
        return nums[left+1];
    }
};

LeetCode33 中等

是在上面第153题基础上进行的扩展,找到在哪旋转的之后,再在相应的部分进行二分查找即可

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int n = nums.size();
        //前半段满足>=nums[0],后半段不满足,用二分在nums[left...right]找到旋转点
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left+(right-left+1)/2;
            if(nums[mid] >= nums[0]){
                //转折点在[mid...right]
                left = mid;
            }
            else
            {
                //转折点在[left...mid-1]
                right = mid - 1;
            } 
        }
        跳出循环时,left处为整个数组中的最大值,后面是旋转的部分
        if(target >= nums[0]){ //说明在前半部分
            left = 0;  //前半部分的左边下标,右边下标为right,前面已经得出
        }
        else{  //在后半部分
            left = left + 1;  //后半部分的左边界
            right = n - 1;  //后半部分的右边界
        }
        现在已经知道了target在哪个部分,因为该部分是有序的,可以直接使用二分查找
        while(left < right){
            int mid = left + right >> 1;
            if(nums[mid] >= target){
                right = mid;
            }
            else left = mid + 1;
        }
        //判断是否找到,没找到的话返回-1
        return (nums[right] == target ? right : -1);
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值