人工智能:遗传算法稀布阵列天线

本文探讨了遗传算法在优化稀布阵列天线设计中的应用,遗传算法作为一种全局搜索方法,能有效解决非线性和多目标优化问题。阵列天线,尤其是稀布阵天线,因其成本效益和高性能受到关注。通过遗传算法对天线阵列进行优化,可以减少阵元数量,降低成本,同时保持良好的方向性和低旁瓣特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

人工智能:遗传算法稀布阵列天线

**
**

1 遗传算法

**
自然界的生物体在遗传、选择和变异等一系列作用下,优胜劣汰,不断地由低级向高级进化和发展,人们将这种“适者生存”的进化规律的实质加以模式化而构成一种优化算法,即进化计算。进化计算是一系列的搜索技术,包括遗传算法、进化规划、进化策略等。它们在函数优化、信号处理、模式识别、机器学习、作业调度、智能控制等众多领域都有着广泛的应用。其中,遗传算法是进化计算中具有普遍影响的模拟进化优化算法。
遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法。它最早由美国的J. H. Holland教授提出,起源于20世纪60年代对自然和人工自适应系统的研究;70年代K. A. De Jong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算试验;80年代D. J. Goldberg在一系列研究工作的基础上归纳总结而成。
20世纪90年代以后,遗传算法作为一种高效、实用、鲁棒性强的优化技术,发展极为迅速,在机器学习、模式识别、神经网络、控制系统优化及社会科学等不同领域得到广泛应用,引起了许多学者的广泛关注。进入21世纪,以不确定性、非线性、时间不可逆为内涵的复杂性科学成为一个研究热点。遗传算法因能有效地求解NP(Non-deterministic Polynomial)问题以及非线性、多峰函数优化和多目标优化问题,得到了众多学科学者的高度重视,同时这也极大地推动了遗传算法理论研究和实际应用的不断深入与发展。目前,在世界范围内已掀起关于遗传算法的研究与应用热潮。
遗传算法借鉴了达尔文的进化论和孟德尔的遗传学说,本质上是一种并行、高效、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值