在当今数据驱动的时代,气象数据对各行各业,如农业、能源、交通和环境科学,具有重要意义。无论是科学研究还是商业决策,准确、易获取的气象数据都至关重要。然而,收集和处理这些数据通常是一个复杂且费时的过程。幸运的是,Python 社区提供了许多强大的工具来简化这一过程,其中,meteostat 库是一个非常实用的选择。
meteostat 是一个开源 Python 库,旨在为用户提供简单、高效的接口,以便访问历史和实时的气象数据。该库支持全球成千上万的气象站,能够提供月度、每日和每小时的气象数据记录。通过 meteostat,开发者和研究人员可以轻松下载所需的气象数据,无需担心复杂的 API 调用或数据格式转换问题。
meteostat 的数据来源包括多个权威机构,如美国国家海洋和大气管理局(NOAA)和德国国家气象局(DWD)。本文将深入探讨如何使用 meteostat 库下载气象站点的月度、每日和每小时数据,并展示一些实际的应用案例。无论是初学者还是有经验的开发者,都可以通过本文获得宝贵的经验,帮助更高效地分析和利用气象数据。
代码实现
安装meteostat库
# -*- coding: UTF-8 -*-
pip install meteostat
根据经纬度查询临近站点信息
以下以上海为例:
# Import Meteostat library
from meteostat import Stations
# Get nearby weather stations
stations = Stations()
stations = stations.nearby(31, 122)
station = stations.fetch(1)
# Print DataFrame
print(station)
下载月数据
# Import Meteostat library and dependencies
from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Stations, Monthly
# Set time period
start = datetime(2010, 1, 1)
end = datetime(2020, 12, 31)
# Get Monthly data
data = Monthly('58367', start, end)
data = data.fetch()
# Plot line chart including average, minimum and maximum temperature
data.plot(y=['tavg', 'tmin', 'tmax'])
plt.show()
下载日数据
# Import Meteostat library and dependencies
from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Point, Daily
# Set time period
start = datetime(2023, 1, 1)
end = datetime(2023, 12, 31)
# Create Point for Vancouver, BC
location = Point(31.1667 , 121.4333 , 3.0)
# Get daily data
data = Daily(location, start, end)
data = data.fetch()
# Plot line chart including average, minimum and maximum temperature
data.plot(y=['tavg', 'tmin', 'tmax'])
plt.show()
结果展示
数据可视化展示
通过简单介绍,我们已经学习了如何使用 meteostat 库来下载气象站点的月度、每日数据。meteostat 提供了简洁直观的 API,使得即便是非专业人员也能快速上手,轻松获取高质量的气象数据。
如下,本文展示了几个实际的应用案例。通过这些示例,我们可以看到,meteostat 不仅简化了数据获取的过程,还显著提高了数据分析的效率和准确性。
月度数据可视化(2010-2020年,上海)
日度数据可视化(2023年,上海)
推荐阅读
欢迎关注我的公众号“AI拾贝”,原创技术文章第一时间推送。