### 题目
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
### 思路
由题意可知,90度旋转该矩形,可以将这个n*n的矩阵想象成由一层一层的矩阵包裹起来的,比如针对例题中的第一个矩阵,它是由12369874这一层加上5这一层包裹起来的,而且很明显,交换也只在同一层之间进行,所以进行旋转的时候,就可以将问题分解一下,一层一层的先进行交换,可以看到,一共会有n/2层进行交换(n等于矩阵的长或宽),然后再说层内的交换,每往中心靠近一层,那么该层在某一行或者某一列的待交换元素就会少两个,所以交换是从i开始,到n-i-1结束的,其中i代表交换到了第几层,最后是每一个元素应该交换到哪一个位置,因为是矩形,所以肯定是交换四次。具体的就通过下面的例子进行讲解:
有矩阵如下:
[ 5, 1, 9,11]
[ 2, 4, 8,10]
[13, 3, 6, 7]
[15,14,12,16]
按照上面的思路,待交换的层数为n/2=2,第一层是5 1 9 11 10 7 16 12 14 15 13 2 5,第二层是4 8 6 3,其中第一层每一行或列待交换个数为3个,因为5会交换到11的位置,所以不计入单独交换个数,然后第二层每一行会交换的个数为1个。然后就是位置如何进行处理了,已知5会交换到11的位置,然后得到1到达11的位置,交换完成,11到的5的位置,然后又将11与16交换,11位置正确了,再将16与15进行交换,两者位置都正确了,第一层第一个元素交换结束,然后交换第二个元素1,依然是同样的道理交换四次之后所有元素位置正确,所以如何确定交换过程中下一个待交换元素的坐标,就是这个题目的核心难点。
首先观察第一次交换是个元素它们之间的坐标变换,四次交换的元素位置依次为(0,0)|(0,3),(3,3),(3,0),(0,0),(0,0)代表最开始记录的temp的坐标,可以看到第一次交换的纵坐标等于第二次交换的横坐标,第二次交换的纵坐标等于第三次的横坐标,第三次的纵坐标等于第四次的横坐标,所以可以在最开始进入交换的时候,假设(i,j)为待交换的元素的格式,所以明显有"上一个j=下一个i"这个规则,而且还有一个,就是纵坐标也有一定的规律,前一个的横坐标加上下一个的纵坐标的和为交换的范围长度,可以看下面的将具体例子写出来的坐标对应:
(0,0) (0,1)
(0,3) (1,3)
(3,3) (3,2)
(3,0) (2,0)
(0,0) (0,1)
所以可以得出(i,j)之间的转换规律就是:
首先得到第一个参加交换的元素的坐标(i1,j1),这个是循环可以得到的,然后与它交换的元素的坐标(i2,j2)为:i2=j1(第一个规律),j2=n-1-i1(符合第二个规律,这样它就在两个相加为n-1的数之间来回变),所以程序就是先写一个临时变量,保存i,因为之后会被j覆盖,然后再用那个临时变量保存下来的初始的i来求j(代码里面因为先用了i,所以是j和k)。
代码的具体逻辑就是上述的,然后就是一些细节的处理了。
### code
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n=matrix.size();
for(int i=0;i<n/2;++i)
{
for(int j=i,k=i;j<n-i-1;++j)
{
int temp=matrix[j][k];
for(int turn=0;turn<4;++turn)
{
int temp_1=j;
j=k;
k=n-temp_1-1;
swap(temp,matrix[j][k]);
}
}
}
return ;
}
};