leetcode 48 旋转图像

### 题目

给定一个 n × n 的二维矩阵表示一个图像。

将图像顺时针旋转 90 度。

说明:

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]
示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]


### 思路

            由题意可知,90度旋转该矩形,可以将这个n*n的矩阵想象成由一层一层的矩阵包裹起来的,比如针对例题中的第一个矩阵,它是由12369874这一层加上5这一层包裹起来的,而且很明显,交换也只在同一层之间进行,所以进行旋转的时候,就可以将问题分解一下,一层一层的先进行交换,可以看到,一共会有n/2层进行交换(n等于矩阵的长或宽),然后再说层内的交换,每往中心靠近一层,那么该层在某一行或者某一列的待交换元素就会少两个,所以交换是从i开始,到n-i-1结束的,其中i代表交换到了第几层,最后是每一个元素应该交换到哪一个位置,因为是矩形,所以肯定是交换四次。具体的就通过下面的例子进行讲解:

有矩阵如下:
[ 5, 1, 9,11]
[ 2, 4, 8,10]
[13, 3, 6, 7]
[15,14,12,16]

          按照上面的思路,待交换的层数为n/2=2,第一层是5 1 9 11 10 7 16 12 14 15 13 2 5,第二层是4 8 6 3,其中第一层每一行或列待交换个数为3个,因为5会交换到11的位置,所以不计入单独交换个数,然后第二层每一行会交换的个数为1个。然后就是位置如何进行处理了,已知5会交换到11的位置,然后得到1到达11的位置,交换完成,11到的5的位置,然后又将11与16交换,11位置正确了,再将16与15进行交换,两者位置都正确了,第一层第一个元素交换结束,然后交换第二个元素1,依然是同样的道理交换四次之后所有元素位置正确,所以如何确定交换过程中下一个待交换元素的坐标,就是这个题目的核心难点。


          首先观察第一次交换是个元素它们之间的坐标变换,四次交换的元素位置依次为(0,0)|(0,3),(3,3),(3,0),(0,0),(0,0)代表最开始记录的temp的坐标,可以看到第一次交换的纵坐标等于第二次交换的横坐标,第二次交换的纵坐标等于第三次的横坐标,第三次的纵坐标等于第四次的横坐标,所以可以在最开始进入交换的时候,假设(i,j)为待交换的元素的格式,所以明显有"上一个j=下一个i"这个规则,而且还有一个,就是纵坐标也有一定的规律,前一个的横坐标加上下一个的纵坐标的和为交换的范围长度,可以看下面的将具体例子写出来的坐标对应:
(0,0) (0,1)


(0,3) (1,3) 
(3,3) (3,2)
(3,0) (2,0)
(0,0) (0,1)

所以可以得出(i,j)之间的转换规律就是:
          首先得到第一个参加交换的元素的坐标(i1,j1),这个是循环可以得到的,然后与它交换的元素的坐标(i2,j2)为:i2=j1(第一个规律),j2=n-1-i1(符合第二个规律,这样它就在两个相加为n-1的数之间来回变),所以程序就是先写一个临时变量,保存i,因为之后会被j覆盖,然后再用那个临时变量保存下来的初始的i来求j(代码里面因为先用了i,所以是j和k)。
代码的具体逻辑就是上述的,然后就是一些细节的处理了。

### code
   

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
       int n=matrix.size();
       for(int i=0;i<n/2;++i)
       {
           for(int j=i,k=i;j<n-i-1;++j)
           {
               int temp=matrix[j][k];
               for(int turn=0;turn<4;++turn)
               {
                   int temp_1=j;
                   j=k;
                   k=n-temp_1-1;
                   swap(temp,matrix[j][k]);
               }
           }
       }
       return ;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值