剑指offer连续子数组的最大和

​题目描述:

          HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?

          例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。

          给一个数组,返回它的最大连续子序列的和。(子向量的长度至少是1)

 

#思路

 

          利用动态规划的思想来分析这个问题,首先利用一个函数f(i)来表示以第i个数字结尾的子数组的最大和,那么只需要求出max(f(i)),其中0<=i<array.size(),就可以得出最后的结果。利用如下的公式来对f(i)进行求值,f(i)的求值分为下列两种情况:

 

第一种情况:f(i)=array[i]  (i=0||f(i-1)<=0),当以array第i-1个元素组成的最大子数组结果肯定是小于0的时候,如果后面的元素在组成最大子数组的时候带上它,那么肯定是会更小的,所以这样的情况下,以第i个元素为结尾的最大子数组肯定就是第i个元素本身,然后i=0的时候,肯定是没有其它元素的,只有array[0]着一个元素,所以最大子数组只能是array[0]。

第二种情况:f(i)=array[i]+f(i-1)  (f(i-1)>0&&i!=0),根据上面的思路来说,就很好理解了,如果以第i-1个数字结尾的最大子数组中所有数字的和大于0,那么与第i个数字累加就得到以第i个数字结尾的最大子数组,不管array[i]是正是负,那么加上一个正数,肯定都大于原来的数。

 

             还有一种解法就是暴力解法,枚举所有的子数组并求出它们的和,再找出最大的结果,但是一个长度为n的数组,总共是有n(n+1)/2个子数组,这很明显是一个O(n^2)时间的解法,效率太差。

 

#代码:

class Solution {
    public:
        int FindGreatestSumOfSubArray(vector<int> array) {
            int sum=0;//假设没有任何元素的时候,子数组和为0.
            int res=INT_MIN;//先将输出结果设定为最小值。
            for(int i=0;i<array.size();i++)
            {
                if(sum<=0)
                {//对应第一种情况,以i-1为结尾的结果小于等于0,并且当i=0
                    sum=array[i];//的时候,也会执行到这条语句。
                    
                }
                else
                {//对应第二种情况。
                   sum=sum+array[i];
                }
                if(sum>res)
                    res=sum;//不必记录f(i)的所有值,只需要选出最大的那一个就可以了。
                    
            }
            
            return res;
             
        }
    };

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>