剑指offer 连续子数组最大的和

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

  • 1 <= arr.length <= 10^5
  • -100 <= arr[i] <= 100

思路,最大子序列可能在右边或左边,如果在中间则横跨左右,且保持中间连续,所以下面2个循环采用从中间到两边寻找;

利用二分递归我们可以实现这一点;返回中间最大子序列或左右

class Solution {
public:
    int Maxnum(vector<int>& nums,int l,int n)
    {
            
        if(l==n)
        {
           return nums[l];
        }
        int mid=(l+n)/2;
        int Maxleft=Maxnum(nums,l,mid);
        int Maxright=Maxnum(nums,mid+1,n);
        
        int Maxl=-100,numl=0;
        for(int i=mid;i>=l;i--)
        {
            numl+=nums[i];
            if(numl>Maxl)
                Maxl=numl;
        
        
        }
        int Maxr=-100,numr=0;
        for(int i=mid+1;i<=n;i++)
        {
            numr+=nums[i];
            if(numr>Maxr)
                Maxr=numr;
        
        
        }
        int z=max(Maxleft,Maxright);
        return max(z,Maxr+Maxl);
        
        
    }
    
    
    int maxSubArray(vector<int>& nums) {
            
        return Maxnum(nums,0,nums.size()-1);
        
        
        
    }
};

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

璀璨的秋叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>