保留道路
题目描述
很久很久以前有一个国家,这个国家有 N 个城市,城市由 1,2,3,…,,N 标号,城市间有 M 条双向道路,每条道路都有两个属性 g 和 s ,两个城市间可能有多条道路,并且可能存在将某一城市与其自身连接起来的道路。后来由于战争的原因,国王不得不下令减小花费从而关闭一些道路,但是必须要保证任意两个城市相互可达。
道路花费的计算公式为 wG*max{所有剩下道路的属性g}+wS*max{所有剩下道路的属性s},其中 wG 和 wS 是给定的值。国王想要在满足连通性的前提下使这个花费最小,现在需要你计算出这个花费。
输入格式
第一行包含两个正整数 N 和 M 。
第二行包含两个正整数 wG 和 wS 。
后面的 M 行每行描述一条道路,包含四个正整数 u,v,g,s,分别表示道路连接的两个城市以及道路的两个属性。
输出格式
输出一个整数,表示最小花费。若无论如何不能满足连通性,输出 -1 。
样例数据 1
输入
3 3
2 1
1 2 10 15
1 2 4 20
1 3 5 1
输出
30
备注
【数据规模与约定】
对于 10% 的数据,N≤10;M≤20;
对于 30% 的数据,N≤100;M≤1000;
对于 50% 的数据,N≤200;M≤5000;
对于 100% 的数据,N≤400;M≤50000;wG,wS,g,s≤1000000000。
解析:
按照g升序排序。 维护一个n-1条边的边集,是上一个建造的最小生成树的边集。 从前往后枚举maxg,把这条边按照s用插入排序插入到当前n-1条边的集合中。 在这样的n条边的集合中建造一颗最小生成树,最后再把用到的边存到边集中(就是将没用到的删去),从而维护了一个n-1的边集。 刚才所说的边集其实就是维护的一棵最小生成树。
时间复杂度≈O(m*n)。
因为最小生成树的性质:在当前的最小生成树中插入一条边,构成了环,把环中最长的边删去就是新的最小生成树。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
using namespace std;
const int Max=50010;
long long ans=1e18,Wg,Ws;
int n,m,size,tot;
int father[410],p[410];
struct shu{int x,y;long long g,s;};
shu edge[Max];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') {f=-1;c=getchar();}
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline int mx(int x,int y)
{
return x > y ? x : y;
}
inline long long mn(long long x,long long y)
{
return x > y ? y : x;
}
inline int getfather(int v)
{
return father[v]==v ? v : father[v] = getfather(father[v]);
}
inline bool comp(const shu &a,const shu &b)
{
return a.g < b.g;
}
inline bool check(int num)
{
int maxx=0;
for(int i=1;i<=n;i++) father[i]=i;
for(int i=1;i<=m;i++)
{
if(edge[i].g <= num)
{
maxx = mx(maxx,edge[i].s);
int fax=getfather(edge[i].x),fay=getfather(edge[i].y);
if(fax != fay) father[fay] = fax;
}
else break;
}
int flag=0;
for(int i=2;i<=n;i++) if(getfather(i) != getfather(1)) {flag = 1;break;}
if(flag) return 0;
else {ans = mx(ans,maxx);return 1;}
}
int main()
{
n=get_int();
m=get_int();
Wg=get_int();
Ws=get_int();
for(int i=1;i<=m;i++)
{
int x=get_int(),y=get_int(),g=get_int(),s=get_int();
if(x == y) continue;
edge[++size].x=x,edge[size].y=y,edge[size].g=g,edge[size].s=s;
}
sort(edge+1,edge+size+1,comp);
int tot = 0;
for(int i=1;i<=size;i++)
{
register int j,sum=0;
long long maxx=0;
for(j=1;j<=n;j++) father[j]=j;
for(j=tot;j>=1;j--)
if(edge[p[j]].s > edge[i].s) p[j+1] = p[j];
else break;
p[j+1] = i,tot++;
for(j=1;j<=tot;j++)
{
int fax=getfather(edge[p[j]].x),fay=getfather(edge[p[j]].y);
if(fax != fay)
{
father[fay] = fax;
maxx= mx(maxx,edge[p[j]].s);
p[++sum] = p[j];
}
if(sum==n-1) break;
}
if(sum == n-1) ans = mn(ans,maxx * Ws + edge[i].g * Wg);
tot = sum;
}
if(ans == 1e18) cout<<"-1\n";
else cout<<ans<<"\n";
return 0;
}