题目背景
NOIP2013 提高组 Day1 试题。
题目描述
A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入格式
第一行有两个用一个空格隔开的整数 n ,m,表示 A 国有 n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。
输出格式
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 -1。
样例数据 1
输入
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出
3
-1
3
备注
【数据范围】
对于 30% 的数据,0<n<1,000 ;0<m<10,000 ;0<q<1,000;
对于 60% 的数据,0<n<1,000 ;0<m<50,000 ;0<q<1,000;
对于 100% 的数据,0<n<10,000 ;0<m<50,000 ;0<q<30,000 ;0≤z≤100,000。
解析:
额最初方向想偏了,当时把题目问题转化成求图中两点间路径中最小边权的最大值,虽然是对的但是根本不好处理,于是GG。。。
看了题解才意识到,因为货车要运尽可能多的货,就应该尽可能走承受力较大的路。因此如果这两个点联通,货车一定是在这些点构成的最大生成树上行走,于是就把图的问题转化为树上的问题,于是只用求两点间最短路径中边权最小值,直接倍增求就行了。
代码:
#include <bits/stdc++.h>
using namespace std;
const int Maxn=10005;
const int Maxm=50005;
int n,m,q,size;
int first[Maxn],f[Maxn][18],d[Maxn][18],depth[Maxn],father[Maxn],vis[Maxn];
struct shu{int to,next,len;};
shu edge[Maxm<<1];
struct kru{int x,y,len;};
kru a[Maxm<<1];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') f=-1,c=getchar();
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline void print(int x)
{
if(x>9) print(x/10);
putchar('0'+x%10);
}
inline bool comp(const kru &a,const kru &b){return a.len>b.len;}
inline int get(int v){return father[v]==v ? v : father[v]=get(father[v]);}
inline void build(int x,int y,int z)
{
edge[++size].next=first[x];
first[x]=size;
edge[size].to=y,edge[size].len=z;
}
inline void dfs(int point,int fa)
{
for(int i=1;i<=16;i++)
if(depth[point]>=(1<<i))
{
f[point][i]=f[f[point][i-1]][i-1];
d[point][i]=min(d[point][i-1],d[f[point][i-1]][i-1]);
}
else break;
for(int u=first[point];u;u=edge[u].next)
{
int to=edge[u].to;
if(to==fa) continue;
f[to][0]=point,d[to][0]=edge[u].len,depth[to]=depth[point]+1;
dfs(to,point);
}
}
inline int LCA(int x,int y)
{
if(depth[x] < depth[y]) swap(x,y);
int len=depth[x]-depth[y];
for(int i=16;i>=0;i--)
if(len>=(1<<i)) len-=1<<i,x=f[x][i];
if(x==y) return x;
for(int i=16;i>=0;i--)
if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][0];
}
inline int search(int x,int fa)
{
int len=depth[x]-depth[fa],minn=1e9;
for(int i=16;i>=0;i--)
if(len>=(1<<i))
len-=1<<i,minn=min(minn,d[x][i]),x=f[x][i];
return minn;
}
inline int solve(int x,int y)
{
int fa=LCA(x,y);
return min(search(x,fa),search(y,fa));
}
int main()
{
n=get_int(),m=get_int();
for(int i=1;i<=n;i++) father[i]=i;
for(int i=1;i<=m;i++) a[i].x=get_int(),a[i].y=get_int(),a[i].len=get_int();
sort(a+1,a+m+1,comp);
for(int i=1;i<=m;i++)
if(get(a[i].x)!=get(a[i].y))
father[get(a[i].x)]=get(a[i].y),build(a[i].x,a[i].y,a[i].len),build(a[i].y,a[i].x,a[i].len);
q=get_int();
for(int i=1;i<=n;i++) if(!vis[get(i)]) vis[get(i)]=1,dfs(i,0);
while(q--)
{
int x=get_int(),y=get_int();
if(get(x)!=get(y)) cout<<"-1\n";
else print(solve(x,y)),putchar('\n');
}
return 0;
}