【NOIP2013提高组】货车运输

47 篇文章 13 订阅
3 篇文章 0 订阅

题目背景

NOIP2013 提高组 Day1 试题。

题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入格式

第一行有两个用一个空格隔开的整数 n ,m,表示 A 国有 n 座城市和 m 条道路。 
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。 
​接下来一行有一个整数 q,表示有 q 辆货车需要运货。 
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出格式

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 -1。 

样例数据 1

输入

4 3 
1 2 4 
2 3 3 
3 1 1 

1 3 
1 4 
1 3

输出


-1 
3

备注

【数据范围】
对于 30% 的数据,0<n<1,000 ;0<m<10,000 ;0<q<1,000; 
对于 60% 的数据,0<n<1,000 ;0<m<50,000 ;0<q<1,000; 
对于 100% 的数据,0<n<10,000 ;0<m<50,000 ;0<q<30,000 ;0≤z≤100,000。

 

解析:

       额最初方向想偏了,当时把题目问题转化成求图中两点间路径中最小边权的最大值,虽然是对的但是根本不好处理,于是GG。。。

       看了题解才意识到,因为货车要运尽可能多的货,就应该尽可能走承受力较大的路。因此如果这两个点联通,货车一定是在这些点构成的最大生成树上行走,于是就把图的问题转化为树上的问题,于是只用求两点间最短路径中边权最小值,直接倍增求就行了。

 

代码:

#include <bits/stdc++.h>
using namespace std;

const int Maxn=10005;
const int Maxm=50005;
int n,m,q,size;
int first[Maxn],f[Maxn][18],d[Maxn][18],depth[Maxn],father[Maxn],vis[Maxn];
struct shu{int to,next,len;};
shu edge[Maxm<<1];
struct kru{int x,y,len;};
kru a[Maxm<<1];

inline int get_int()
{
    int x=0,f=1;
    char c;
    for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
    if(c=='-') f=-1,c=getchar();
    for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
    return x*f;
}
inline void print(int x)
{
    if(x>9) print(x/10);
    putchar('0'+x%10);
}

inline bool comp(const kru &a,const kru &b){return a.len>b.len;}
inline int get(int v){return father[v]==v ? v : father[v]=get(father[v]);}
inline void build(int x,int y,int z)
{
    edge[++size].next=first[x];
    first[x]=size;
    edge[size].to=y,edge[size].len=z;
}

inline void dfs(int point,int fa)
{
    for(int i=1;i<=16;i++)
      if(depth[point]>=(1<<i))
      {
      	f[point][i]=f[f[point][i-1]][i-1];
      	d[point][i]=min(d[point][i-1],d[f[point][i-1]][i-1]);
      }
      else break; 
    for(int u=first[point];u;u=edge[u].next)
    {
      int to=edge[u].to;
      if(to==fa) continue;
      f[to][0]=point,d[to][0]=edge[u].len,depth[to]=depth[point]+1;
      dfs(to,point);
    }
}

inline int LCA(int x,int y)
{
    if(depth[x] < depth[y]) swap(x,y);
    int len=depth[x]-depth[y];
    for(int i=16;i>=0;i--)
      if(len>=(1<<i)) len-=1<<i,x=f[x][i];
    if(x==y) return x;
    for(int i=16;i>=0;i--)
      if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
    return f[x][0];
} 

inline int search(int x,int fa)
{
    int len=depth[x]-depth[fa],minn=1e9;
    for(int i=16;i>=0;i--)
      if(len>=(1<<i))
      	len-=1<<i,minn=min(minn,d[x][i]),x=f[x][i];
    return minn;
}

inline int solve(int x,int y)
{
    int fa=LCA(x,y);
    return min(search(x,fa),search(y,fa));
}

int main()
{ 
    n=get_int(),m=get_int();
    for(int i=1;i<=n;i++) father[i]=i;
    for(int i=1;i<=m;i++) a[i].x=get_int(),a[i].y=get_int(),a[i].len=get_int();
    sort(a+1,a+m+1,comp);
    for(int i=1;i<=m;i++)
      if(get(a[i].x)!=get(a[i].y))
      	father[get(a[i].x)]=get(a[i].y),build(a[i].x,a[i].y,a[i].len),build(a[i].y,a[i].x,a[i].len);
    q=get_int();
    for(int i=1;i<=n;i++) if(!vis[get(i)]) vis[get(i)]=1,dfs(i,0);
    while(q--)
    {
      int x=get_int(),y=get_int();
      if(get(x)!=get(y)) cout<<"-1\n";
      else print(solve(x,y)),putchar('\n');
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值