Air Raid
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 9264 | Accepted: 5549 |
Description
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.
With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.
Input
Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:
no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets
The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.
There are no blank lines between consecutive sets of data. Input data are correct.
Output
The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.
Sample Input
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3
Sample Output
2
1
解析:
最小路径覆盖。
由于每个点至多作为一个前驱和一个后继,所以考虑拆点,每条边将对应点连接于是形成一个二分图,做最大匹配后就相当于尽量使得每个点都能作为前驱后继,剩下的即为每条路径的起点或终点,n 减去匹配数即为答案。
代码(最大流):
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <queue>
using namespace std;
const int inf=1e9;
const int Maxn=300;
const int Maxm=5000;
int t,n,m,size,ans,S,T;
int first[Maxn],tmp[Maxn],dep[Maxn];
struct shu{int to,next,len;};
shu edge[Maxm<<1];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') f=-1,c=getchar();
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline void clean()
{
size=1,ans=0,T=n*2+2;
memset(first,0,sizeof(first));
}
inline void build(int x,int y,int z)
{
edge[++size].next=first[x],first[x]=size,edge[size].to=y,edge[size].len=z;
edge[++size].next=first[y],first[y]=size,edge[size].to=x,edge[size].len=0;
}
inline void pre()
{
for(int i=1;i<=n;i++) build(S,i,1),build(i+n,T,1);
for(int i=1;i<=m;i++)
{
int x=get_int(),y=get_int();
build(x,y+n,inf);
}
}
inline bool bfs()
{
memset(dep,0,sizeof(dep));
queue<int>q;q.push(S),dep[S]=1;
while(q.size())
{
int p=q.front();q.pop();
for(int u=first[p];u;u=edge[u].next)
{
int to=edge[u].to;
if(!dep[to]&&edge[u].len)
{
dep[to]=dep[p]+1,q.push(to);
if(to==T) return 1;
}
}
}
return 0;
}
inline int dinic(int p,int flow)
{
if(p==T) return flow;
int sum=0;
for(int &u=tmp[p];u&&sum<flow;u=edge[u].next)
{
int to=edge[u].to;
if(dep[to]==dep[p]+1&&edge[u].len)
{
int minn=dinic(to,min(flow-sum,edge[u].len));
if(!(flow-sum)){dep[to]=0;break;}
edge[u].len-=minn,edge[u^1].len+=minn,sum+=minn;
}
}
return sum;
}
inline void solve()
{
while(bfs())
{
memcpy(tmp,first,sizeof(first));
ans+=dinic(S,inf);
}
cout<<n-ans<<"\n";
}
int main()
{
t=get_int();
while(t--)
{
n=get_int(),m=get_int();
clean();
pre();
solve();
}
return 0;
}