- 描述:Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.
Example 1:
Input: s1 = “sea”, s2 = “eat”
Output: 231
Explanation: Deleting “s” from “sea” adds the ASCII value of “s” (115) to the sum.
Deleting “t” from “eat” adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.
Example 2:
nput: s1 = “delete”, s2 = “leet”
Output: 403
Explanation: Deleting “dee” from “delete” to turn the string into “let”,
adds 100[d]+101[e]+101[e] to the sum. Deleting “e” from “leet” adds 101[e] to the sum.
At the end, both strings are equal to “let”, and the answer is 100+101+101+101 = 403.
If instead we turned both strings into “lee” or “eet”, we would get answers of 433 or 417, which are higher.
- 分析:这道题是要求找到将两个字符串删除到相同所需要的最小ASCII码的值。
- 思路一:动态规划。定义一个二维数组dp[][]用来存储将两个字符串改变到相同所需要的花费。dp[i][0]用来存储把字符s1[i]删除的代价,dp[0][i]用来存储把字符s2[i]删除的代价。
class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
int dp[s1.size() + 1][s2.size() + 1];
dp[0][0] = 0;
for (int i = 1; i < s1.size() + 1; i++) {
dp[i][0] = dp[i-1][0] + s1[i-1];
}
for (int i = 1; i < s2.size() + 1; i++) {
dp[0][i] = dp[0][i-1] + s2[i-1];
}
for (int i = 1; i < s1.size() + 1; i++) {
for (int j = 1; j < s2.size() + 1; j++) {
int s = judge(s1[i-1], s2[j-1]);
int temp_min = min(s1[i-1] + dp[i-1][j], s2[j-1] + dp[i][j-1]);
dp[i][j] = min(dp[i-1][j-1] + s, temp_min);
}
}
return dp[s1.size()][s2.size()];
}
private:
int judge(char t1, char t2) {
if (t1 == t2) return 0;
else return (t1+t2);
}
};