迹象权数WOE、信息值IV、kS值、GINI系数

WOE和IV使用来衡量变量的预测能力,值越大,表示此变量的预测能力越强。

WOE=ln(累计正样本占比/累计坏样本占比)

IV=(累计正样本占比-累计坏样本占比)*WOE

信息值(IV) 预测能力
<0.03 无预测能力
0.03~0.09
0.1~0.29
0.3~0.49
0.5~ 极高

KS和GINI系数用来衡量数据对好坏样本的区分能力

KS 值,累计客户分布百分比,由小到大排列,两者之间的最大差距值即为KS值,其值越大表示模型的区分能力越强。

è¿éåå¾çæè¿°

K-S值 解释能力
<0.20 No 
0.21 ~0.40
0.41~0.50
0.51~0.60
0.61~0.75 极高
>0.9 太高,可能有问题

GINI系数

分别以纵轴及横轴表示分数由高至低及好坏客户的累积百分比,用以显示各分数下好坏客户的累积差异。

è¿éåå¾çæè¿°

基尼系数 解释能力
0 NO
0~0.4
0.4~0.6
0.6~0.8
>0.8 极高

 

 

 

展开阅读全文

信息增益率与gini系数

07-14

<p>rn <br />rn</p>rn<p>rn <p>rn <p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威正版授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span>rn </p>rn <p>rn 点此链接购买:rn </p>rn <table>rn <tbody>rn <tr>rn <td>rn <span style="color:#337FE5;"><a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</a><br />rn</span>rn </td>rn </tr>rn </tbody>rn </table>rn </p>rn</p>rn购买课程后,请扫码进入学习群,获取唐宇迪老师答疑rn<p>rn <br />rn</p>rn<p>rn <img src="https://img-bss.csdn.net/201908070536506163.jpg" alt="" /> rn</p>rn<p>rn Python<span>机器学习实训营(原理推导</span><span>+</span><span>代码复现</span><span>+</span><span>实验分析)</span><span>课程</span><span>旨在帮助同学们在机器学习领域打下坚实基础。课程注重算法原理讲解与数学公式推导并基于</span>Python<span>语言给出完整的代码实现,从零开始实现每一模块功能(非调用工具包)通过代码实例演示算法工作流程与实现方法,基于案例进行实验分析,算法涉及核心知识点全方位解读。整体风格通俗易懂,</span>建议同学们在学习过程中先掌握算法原理,基于数学推导公式进行代码复现与实战演练。课程提供全部课程所需PPT,数据,代码。rn</p>

没有更多推荐了,返回首页