给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
这道题本来是能做出来的,但是还是遗憾收场,我分析了之所以这样,是因为我做题时又乱了阵脚,没有秉承先思考这道题的思路,再往具体的算法上靠近的规则,这是一道动态规划类的题,它求的最大子序列,也是一步一步的推出来的,它的下一步是由上一步推出来的。对于这类题,你要看的我感觉就不必太多,你要着眼的就是最初的那数组的前几个,分析它们是否满足最大子序列然后就可以类推到一个更长的数组。
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1, length = nums.length; i <length ; i++) {
// 加入数组只有两个元素,那么它们要比的就是两个元素的和的大小和第一个元素和第二个元素的大小比较,首先你要明白,如果第一/二个元素是负数,那么加上它就是累赘,就不是最大长度了,所以你要判断它的第一/二个元素是否为负。
dp[i] = Math.max(dp[i-1]+nums[i],nums[i]);
max = Math.max(max,dp[i]);
}
return max;
}
所以你只需要用清楚当元素个数为2个时,你就可以推出更多的元素个数