windows先觉条件
NOTE: These instructions are only required when compiling OpenPose brom(from) source. If you simply wanna use the OpenPose binaries for Windows, skip this step.
(注意:以下的操作指南仅仅使用于从源码编译OpenPose,如果你只是想在windows平台上运行OpenPose的二进制程序。请跳过这个步骤)
- Install CMake GUI: Download and install the
Latest Release
of CMakeWindows win64-x64 Installer
from the CMake download website, calledcmake-X.X.X-win64-x64.msi
.
第一步:安装CMake GUI:从CMake download website下载cmake-X.X.X-win64-x64.msi
和安装最新的CMake Windows win64-x64版本。
2.Install Microsoft Visual Studio (VS) 2017 Enterprise or VS 2015 Enterprise Update 3:
IMPORTANT: Enable all C++-related flags when selecting the components to install.
Different VS versions:
If Visual Studio 2017 Community is desired, we do not officially support it, but it should run similarly to VS 2017 Enterprise.
VS 2015 Community and Enterprise Update 1 might give some compiler errors. They have not been tested and they are totally not supported (use VS 2017 Community instead).
第二步:安装Microsoft Visual Studio(VS)2017 Enterprise 或者 VS2015 Enterprise Update 3 (备注:经测试VS2019Enterprise也可以的)
重要:当选择组件安装的时候,选择所有关于C++相关的选项。
不同版本VS:
如果安装的Visual Studio 2017 Community(社区版),我们不提供官方的支持。但是它的运行方式和Vs2017 Enterprise(企 业版)类似。
VS2015 Community(社区版)和Enterprise(企业版)Update1可能会给出一些错误。上述两个版本(Update1)没有被测试过并且他们不是总被支持的(用VS2017社区版代替)。
Nvidia GPU version prerequisites:
- Note: OpenPose has been tested extensively with CUDA 10.0 / cuDNN 7.5 for VS2017 and CUDA 8.0 / cuDNN 5.1 for VS 2015. We highly recommend using those versions to minimize potential installation issues. Other versions should also work, but we do not provide support about any CUDA/cuDNN installation/compilation issue, as well as problems related to their integration into OpenPose.
- CUDA 10 or CUDA 8:
- Install CUDA 8.0/10.0 after Visual Studio 2015/2017 is installed to assure that the CUDA installation will generate all necessary files for VS. If CUDA was already installed, re-install it.
- Important installation tips:
- (Windows issue, reported Sep 2018): If your computer hangs when installing CUDA drivers, try installing first the Nvidia drivers, and then installing CUDA without the Graphics Driver flag.
- If CMake returns and error message similar to
CUDA_TOOLKIT_ROOT_DIR not found or specified
or any other CUDA component missing, then: 1) Re-install Visual Studio 2015; 2) Reboot your PC; 3) Re-install CUDA (in this order!).
- cuDNN 7.5 or cuDNN 5.1:
- In order to manually install it, just unzip it and copy (merge) the contents on the CUDA folder, usually
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
in Windows and/usr/local/cuda/
in Ubuntu.
- In order to manually install it, just unzip it and copy (merge) the contents on the CUDA folder, usually
Nvidia GPU版本先觉条件:
1.注意:OpenPose已经广泛的被测试在VS2017用CUDA10.0/cuDNN7.5和VS2015用CUDA8.0/cuDNN5.1.我们高度建议用 这些版本,以减少潜在的安装问题。其他的版本应当也可以工作,但是我们不能提供其他任何CUDA/cuDNN版本的安 装和编译问题的支持,和一些OpenPose相关联的整合和问题。
2.CUDA10.0 或者 CUDA8.0
1.在安装了VS2015/VS2017之后再去安装CUDA8.0/CUDA10.0以确保CUDA安装是为VS产生必要的文件。如果 CUDA已经被安装,在安装完VS之后,请在安装一次CUDA.
2.重要提示:
(Windows平台问题,2018年9月被报告)如果在安装CUDA的过程中你的电脑挂了。尝试先安装NVidia 驱 动程序,然后在安装CUDA,并且不要选择Graphics Driver(显卡驱动)标志。
如果Cmake返回错误信息类似 CUDA_TOOLKIT_ROOT_DIR not found or specified
或者任何其他的CUDA组件丢失,然后1、重装VS 2、 重启电脑 3、重装CUDA (注意安装顺序!!!!)
3、 cuDNN7.5/cuDNN5.1:
手动安装:解压并且拷贝内容到CUDA文件夹,通常情况下在Windows的路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0 (备注:将文件和文件夹复制过去覆盖CUDA文件夹下覆盖原来的文件。如果提示你是否覆盖说明你覆盖的目录是对的:-)).
4.AMD GPU version prerequisites:
- Download official AMD drivers for Windows from AMD - Windows.
- The libviennacl package comes packaged inside OpenPose for Windows (i.e., no further action required).
4.AMD GPU版本的先觉条件:
1.从AMD - Windows.下载Windows版本的官方驱动
2.libviennacl包打包在OpenPose for Windows中(即不需要进一步的操作)。
5.Caffe, OpenCV, and Caffe prerequisites:
- CMake automatically downloads all the Windows DLLs. Alternatively, you might prefer to download them manually:
- Dependencies:
- Note: Leave the zip files in
3rdparty/windows/
so that CMake does not try to download them again. - Caffe: Unzip as
3rdparty/windows/caffe/
. - Caffe dependencies: Unzip as
3rdparty/windows/caffe3rdparty/
. - OpenCV 4.0.1: Unzip as
3rdparty/windows/opencv/
- Note: Leave the zip files in
- Dependencies:
5.Caffe,OpenCV,和Caffe的先觉条件:
1.CMake自动下载所有的windows DLLs.或者,你可以手动下载(备注:建议手动下,自动下载好慢啊)
其他:
1.注意:解压Zip文件到3rdparty/windows/
CMake就不会再去下载
2.Caffe:解压到Unzip as 3rdparty/windows/caffe/
.
3.Caffe dependencies: 解压大3rdparty/windows/caffe3rdparty/
.
4.OpenCV 4.0.1: 解压到 3rdparty/windows/opencv/
6.Eigen prerequisite (optional, only required for some specific extra functionality, such as extrinsic camera calibration):
- Enable the
WITH_EIGEN
flag when running CMake, and set it toBUILD
. - CMake will automatically download Eigen.
- Alternatively, you can manually download it from the Eigen3 website, run CMake so that OpenPose downloads the zip file, and then replace the contents of
3rdparty/eigen/
by your own version.
6.Eigen 先觉条件(可选,仅仅一些扩展的功能需要,例如extrinsic camera calibration)
1.开启WITH_EIGEN标志,当运行CMake时,同时设置它为BUIKD
2.CMake将自动下载Eigen
3.或者你可以手动下载它从
Eigen3 website,放到3rdparty/eigen/
本次配置成功的环境:VS2019 Enterprise CUDA10.1 cuDNN8.0 CMake成功。运行OpenPoseDemo.exe的时候提示错误,经查。是CUDA和cuDNN的版本和显卡的驱动不匹配。驱动程序的版本低了。重新安装新版本的驱动解决了问题。如下是两者的对应关系:(https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)
CUDA Samples
Code samples that illustrate how to use various CUDA and library APIs are available in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the samples/ directory is read-only and the samples must be copied to another location if they are to be modified. Further instructions can be found in the Getting Started Guides for Linux and Mac.
Documentation
The most current version of these release notes can be found online at http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html. Also, the version.txt file in the root directory of the toolkit will contain the version and build number of the installed toolkit.
Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML form at doc/html/index.html and online at http://docs.nvidia.com/cuda/index.html.
CUDA Driver
Running a CUDA application requires the system with at least one CUDA capable GPU and a driver that is compatible with the CUDA Toolkit. See Table 1. For more information various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus. Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will continue to work on subsequent (later) driver releases. More information on compatibility can be found at https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version.
CUDA Toolkit | Linux x86_64 Driver Version | Windows x86_64 Driver Version |
---|---|---|
CUDA 10.1 (10.1.105 general release, and 10.1.168 Update 1 general release) | >= 418.39 | >= 418.96 |
CUDA 10.0.130 | >= 410.48 | >= 411.31 |
CUDA 9.2 (9.2.148 Update 1) | >= 396.37 | >= 398.26 |
CUDA 9.2 (9.2.88) | >= 396.26 | >= 397.44 |
CUDA 9.1 (9.1.85) | >= 390.46 | >= 391.29 |
CUDA 9.0 (9.0.76) | >= 384.81 | >= 385.54 |
CUDA 8.0 (8.0.61 GA2) | >= 375.26 | >= 376.51 |
CUDA 8.0 (8.0.44) | >= 367.48 | >= 369.30 |
CUDA 7.5 (7.5.16) | >= 352.31 | >= 353.66 |
CUDA 7.0 (7.0.28) | >= 346.46 | >= 347.62 |
For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this driver is for development purposes and is not recommended for use in production with Tesla GPUs. For running CUDA applications in production with Tesla GPUs, it is recommended to download the latest driver for Tesla GPUs from the NVIDIA driver downloads site at http://www.nvidia.com/drivers.
During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on Windows (when using the interactive or silent installation) or on Linux (by using meta packages). For more information on customizing the install process on Windows, see http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software. For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
CUDA-GDB Sources
CUDA-GDB sources are available as follows:
- For CUDA Toolkit 7.0 and newer, in the installation directory extras/. The directory is created by default during the toolkit installation unless the .rpm or .deb package installer is used. In this case, the cuda-gdb-src package must be manually installed.
- For CUDA Toolkit 6.5, 6.0, and 5.5, at https://github.com/NVIDIA/cuda-gdb.
- For CUDA Toolkit 5.0 and earlier, at ftp://download.nvidia.com/CUDAOpen64/.
- Upon request by sending an e-mail to mailto:oss-requests@nvidia.com