首先,如果学了离散数学的会发现该公式与离散数学中的“集合计数的包含排斥原理”有异曲同工之妙。可以说就是换了一些符号,我本来想讲离散数学的包含排斥原理,原因嘛,好多人都懂。但是由于离散数学上的“贡献计数法”确实牛逼得很,无法超越,于是改讲概率论的多事件的加法公式。
网上找的,我就分析四个事件a,b,c,d的情况,然后给出一般规律。一般概率这东西,可以和集合的文氏图联系起来,特别好用,我这里也要用文氏图的理论来分析。
在一个文氏图中,全集表示必然事件的概率为1。文氏图如下
网上找的,我就分析四个事件a,b,c,d的情况,然后给出一般规律。一般概率这东西,可以和集合的文氏图联系起来,特别好用,我这里也要用文氏图的理论来分析。
在一个文氏图中,全集表示必然事件的概率为1。文氏图如下