AllenNLP参数初始化源码可以阅读allennlp.nn.initializers,他们将加载预训练模型也作为一种参数初始化方式,加到这部分。
使用方法
- 模型的构造参数设置一项
initializer: InitializerApplicator = InitializerApplicator()
,用initializer来对模型参数进行不同的初始化。 - 在__init__最后加一行
initializer(self)
- 设置配置文件,举个例子:
"model":
{
...,
"initializer":
[
[".*_highway_layer._layers.*.weight", {"type": "xavier_normal"}],
[".*highway_layer._layers.*bias", {"type": "constant", "val": 0}],
[
".*_text_field_embedder.*|_model_highway_layer._layers.*|.*encoding_proj.*|.*_phrase_layer.*|.*_modeling_layer.*|.*predictor.*|.*_matrix_attention.*",
{
"type": "pretrained",
"weights_file_path": "./weights.th"
}
]
]
}
- 用正则表达式确定需要初始化的层,常用的是“.*”,表示匹配任意个数的任意字符
- 我在使用过程中注意到需要避免对Layernorm初始化,bias不能用xavier_normal
- 可以对不同的层进行不同的初始化,比如在修改一部分结构之后,可以对其他部分用预训练模型初始化,对修改的部分用其他初始化方式