数据分析方法与模型

数据分析模型

费米问题-大致估算

面试中的常见开放问题,比如北京有多少加油站,需要做到有理有据,有大致的参数和估算方法。
前提要具备基本的数据常识,如面积、人口数、物价等
根据供需关系可以解决80%的费米问题,此外,还可以考虑空间关系、收入关系、时间关系。
从供需关系入手:假设加油站满足需求,从人口数推出车辆数,再由加油时长、加油站工作时间、平均站桩、油桩利用率可推出加油站的供给能力,由车辆和加油频率算出加油站每天的需求,最后可得出加油站数。(也涉及时间关系)
在这里插入图片描述

从空间关系进行分析:
在这里插入图片描述

从收入关系进行分析:
在这里插入图片描述

OSM模型

一、OSM模型是什么

OSM模型是三个词缩写:

目标Objective;策略Strategy;度量Measurement;

它是一套业务分析框架,非算法模型;适用于:目标已经清晰,行动方向已经明确的情况。
当清晰目标以后,需要制定执行计划——OSM模型,就是把宏大的目标拆解,对应到部门内各个小组具体的、可落地、可度量的行为上,从保证执行计划没有偏离大方向。

举个简单例子:某生鲜电商APP,给运营部门目标:提升沉睡用户付费激活率,至少提高一倍吧。
第一步:把语文变成数学,定义O(如下图)。
在这里插入图片描述
第二步:梳理流程,找到可改善的S(如下图)。
在这里插入图片描述

第三步:为每个S梳理子指标,便于后期执行(如下图)。
在这里插入图片描述
三步,就搞掂了一个数字化执行计划。下边可以推动创意设计,或者直接交付执行监控了。这个方法非常简单,其实和平时拆解监控指标的做法差不多,就是多加了一步:对应业务策略而已。所以很容易上手。

二、OSM模型的用法

OSM模型有正向和反向使用两种用法:

1)正向使用:在项目开始前,分解大目标,明确行动和每个行动考核指标;这是上边的例子所演示的工作流程。如果企业数据驱动氛围很好,理应这么工作。
2)反向使用:项目前期没有做啥筹备,事后复盘发现一堆问题;这时候想要检讨为啥做烂了,也能按这个思路,把项目中做的事一一梳理出来,看这些事能影响什么子指标,实际影响到了没有,这些子指标和大目标之间有啥联系。

在数据驱动氛围不好的企业里,反向使用的用处更大!因为很多企业就是干事拍脑袋,出事拍大腿。

在策划阶段压根没有动脑子:
过去这么干,所以现在这么干别人这么干,所以我们这么干领导说咋干,所以咱就这么干朋友圈干了,所以俺们跟着干至于这么干:
有没有影响?能有啥影响?影响到了谁?与大目标有没关系?与大目标有多大关系?这时候重新复盘是很有必要的,通过OSM梳理,能发现一些明显然并卵的行为,从而积累分析经验,避免下一次犯错。

比如还是上边的例子。

听着厉害但没用的S:比如建立精准的用户流失预测模型;听起来很厉害,可实际上预测完了对指标有改善吗?屁用没有,最后还是得发信息、派券、选商品;没有模型这些照样做,有了模型这些也得做;所以建立精准预测,就应该只是一个二级小行动,不能放在一级行动。
有用,但只有局部用处的S:比如在APP内派券;注意,我们是针对已注册但至少30天未购货用户;所以单纯的站内派券,只能影响仍有登录的部分用户;这时候可以看——到底这些用户有多大比例会登录,未登录的部分是明显没影响的。
全局有用,但用处有限的S:比如做个花里胡哨的签到、浇水种树送果实、养金猪什么的;你看人家并夕夕都在用呢!听起来能影响全局,但是很有可能落地完了响应率、打卡完成率低的一塌糊涂;这时候可以就能判断,这玩意看着香,吃起来臭。
总之,即使公司数据驱动程度很低,也不影响数据分析师利用OSM方法积累经验;只要我们自己能梳理清楚流程,熟悉流程上常见的业务玩法,是能基于OSM,诊断业务问题的。

三、还有哪些数据分析方法

数据分析本身是个名词,就和“打”“吃”“说话”一样,如果脱离“打什么”“吃什么”“说什么”,空谈方法论,是很奇怪的。
请问:怎么吃?——what?哥哥你在问什么呀
请问:买了一只河豚怎么吃?——诶呀,这个就专业了!
所以脱离业务流程和业务场景,企图纯粹的谈数据分析方法论,就容易陷入形而上学的窘境,讲了一堆听起来牛逼但是很虚的东西;所以想讲清楚方法论,一定要具体一些。
站在业务流程角度,有5个大环节可以产生分析方法(如下图)。
在这里插入图片描述
站在业务场景角度,主要要考虑每个行业有多少数据积累,有哪些数据采集;数据丰富程度与数据质量,会直接影响分析方法的选择。

SWOT模型

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

PEST模型

在这里插入图片描述

在这里插入图片描述
政治因素(Political): 包括政府政策、法律法规、政治稳定性等,这些因素可能影响组织的运营和决策。
经济因素(Economic): 涵盖经济增长、通货膨胀、利率、汇率等,对组织的财务状况和市场环境产生重大影响。
社会因素(Social): 考虑人口结构、文化、价值观念、社会趋势等,了解市场需求和消费者行为。
技术因素(Technological): 包括创新、科技发展、专利和知识产权等,对组织的竞争力和业务模式产生深远影响。

具体参考:提高思考效率的50个模型(8)——PEST分析

波特五力

在这里插入图片描述

参考:1个案例,详细解读波特五力分析

在这里插入图片描述

运用:小龙虾店的“五力模型”分析

第一,直接竞争对手。

拐角那家小龙虾店,对面的火锅店,整个地下一层的餐饮店,都是你的直接竞争对手,因为你们争夺的,都是电梯门“叮的一声打开,那些饥肠辘辘的人们。
做个简单的分析,每天电梯门“叮”地打开走出来多少人,平均到每一家能不能养活你的餐厅。如果不能你要警醒:你处于一个“充分竞争’甚至“过分竞争”的市场。
这时你可以考虑三个策略:
a)组成“地下一层餐饮联盟”,给写字楼施加压力,迫使他们做出引流动作;
b)提供更优异、更便宜、或者差异化的餐饮,升级你的个别竞争优势;
c)研究退出成本,比如装修费用、保证金等,准备撤出

第二,顾客。

顾客作为一股重要的“竞争作用力”,主要体现在他们的谈判力量上。
大公司的行政部会找几家餐厅谈判,出示员工卡可以获得深度折扣。如果这家公司员工数占大厦的可观比率,这时“顾客”就有巨大的谈判力量。你在他合作列表里,赚钱会少;你不在他合作列表里,赚钱会更
这时,你可以联合几家差异化明显的餐厅,成立地下一层的“天合联盟”,增加餐厅谈判力量。你们还可以发行联盟折扣储值卡”,增加顾客迁移成本。

第三,供应商。

如果你的小龙虾是从江苏盱眙最大“供应商”采购的它同时服务几百家客户,那你基本就没有什么谈判力量。这也是为什么APP开发公司在苹果面前都是弱势群体。
这时你可以考虑换家小供应商,小到你的生意对他足够重要。不做大公司的小客户,也不找卖大闸蟹的人买小龙虾。对前者来说,你不重要:对后者来说,小龙虾的生意都不重要。

第四,潜在新进公司。

这座写字楼1-4楼的商场经营惨淡,会关掉不少服装店,然后用50%面积做餐饮。这时你就面临“潜在新进公司”这股“竞争作用力”了。
你要想办法提高他们的进入门槛,也就是你们“地下一层餐饮业”的壁垒。比如,你联合其他餐厅,一起策略性地降价,让后入者无利可图;你还可以尽快发行储值卡、优惠券,锁定未来2~3年的收入,让潜在进入者知难而退。

第五,替代性产品。

替代性产品就是,如果不吃你的小龙虾,顾客还能吃什么?对你们“地下一层餐饮业”来说,替代性产品就是,让顾客们不再到地下一层了,电梯不再“叮’地一声开门了。
你最典型的替代性产品,是外卖服务。那些小巷子里的低成本餐厅,大批抢走了你的客户:还有便利店里的盒饭和微波炉,还有那些“减肥奶昔、蔬果汁、辟谷课程”等,他们在白领中流行起来了,午餐的整体市场规模都会减少,就像数码相机作为替代性产品,干掉了几乎整个胶卷业一样。
那怎么办?尽快推出“小龙虾盖浇饭”,“小龙虾生煎包”“小龙虾青团”“小龙虾面”,然后和各种外卖平台合作。或者推出“比蛋白质粉更好的健身伴侣”套餐,与写字楼里的健身房,或者健身教练合作,让那些不敢吃糖,不敢吃饭,不敢吃肥肉的健身达人,在大汗淋漓之后,勇敢地吃小龙虾。

你看,当你理解你的竞争对手不仅仅是地下一层的那些餐厅,而能用“五力模型”来进行系统性地分析,就算仅仅是一家小龙虾餐厅,都可以得出很多有效的“竞争战略”,从而获得优势。

4PS模型

在这里插入图片描述

产品(Product): 指的是企业提供给顾客的产品或服务。产品的设计、特性、品质等都是该要素的关注点。
价格(Price): 涉及确定产品或服务的售价。价格制定需要综合考虑成本、市场需求、竞争对手等多方面因素。
渠道(Place): 强调产品或服务的分销渠道,即如何将产品传递给顾客。这包括销售渠道、物流、零售等方面。
推广(Promotion): 涉及产品或服务的市场宣传和推广策略。广告、促销、公关等手段都属于推广的范畴。
在这里插入图片描述

参考:提高思考效率的50个模型(16)——4Ps营销理论

5W2H模型

在这里插入图片描述
面试中常见的开放题,对应问题:要如何做?

七问(5w2h):
what:是什么,目的是什么
why:为什么,为什么要这样做,原因是什么,造成这样的结果为什么
when:何时,什么时间完成,什么时机最合适
where:何处,在哪里做,从哪入手
who:谁,由谁来承担,谁来完成,谁负责
how:怎么做,如何提高效率,如何实施,方法怎样
how much:多少,做到什么程度,数量如何,质量水平怎么样,费用产出如何

案例:

你们现在准备一个电动汽车上市的推广策划,预算是20w,一个月的时间准备,你会怎样规划?(面试时注意有效的合理沟通提问)
1.信息较少时可以向面试官提问
汽车定价(20w)、产品定位、产品特色(更节能经济)、技术(续航更久、充电更快)、外观、目标用户画像(工作了3-5年的1、2线白领,男性居多,有3台车可在推广时使用)
2.使用5w2h进行问题拆解
what主题内容:电动、环保
why活动目的:拓展年轻群体对电动汽车的认知,培养种子用户
who人员:内部:根据内部人员情况,做好工作分配安排;合作方:提前联系并确认好供应商、合作媒体、宣传资源
when活动时间:配合上市时间,推广时间在上市前两周,为上市做好预热
where渠道:制作宣传视频并投放,与商场合作开设试驾点,后期宣传
how方式:对工作进行细化
how much:分配预算

RFM模型

加粗样式

RFM的基本思路

RFM模型由三个基础指标组成:
R:最近一次消费至今的时间
F:一定时间内重复消费频率
M:一定时间内累计消费金额

RFM模型里,三个变量的含义是很具体的:

M:消费越多,用户价值越高,越应该重点关注。
R:离得越远,用户越有流失可能,越应该唤醒用户。
F:频次越低,越需要用一次性手段(比如促销、赠礼),频次越高,越可以用持续性手段(积分) 来维护

因此RFM能直接从数据推导出行动建议,是一种非常好用的办法。

RFM的小例子

一起来看个具体例子:

某个打车出行APP,已按RFM格式,统计好用户数据(如下图,仅为示例数据100条),现领导要求:分析分析用户情况。要怎么分析呢?
第一步:先看M。区分用户价值是第一位的,先认清谁是大客户,谁是小客户,后边工作思路才清晰。我们可以用十分位法,简单地对用户分层,看哪些是大客户。
分好组以后,可以打开数据透视表,看一下每组的消费占比。
哇!第一组用户就贡献了40%+的消费,前三组合起来,共30%的用户贡献额74%的消费,真是大客户呢,因此可以分类如下:
第一组:VIP3(最高级VIP)
第二组、第三组:VIP2(每组消费占整体大于10%)
第四、第五组:VIP1(每组消费占整体大于5%,小于10%)
剩下5组:VIP0(单组消费占整体不足5%)
这里可以用一个IF语句,来做好分类(如下图)。
在这里插入图片描述
分类完以后可以观察每组的消费门槛在哪里,比如第一组的门槛是798元/月。在运营制定策略的时候,很有可能为了方便,找一个最近的整数。因此可以做一个手动调整,把VIP3的门店改到:一个月内消费800元。类似地,其他门槛也能做同样调整。

调整好了以后,我们已经分离出了大客户/小客户,可以做下一步的分类了。下一步可以做R。如何确定R的分类呢?可以直接根据业务特点来定。比如打车,即使再需要坐车的人,也不可能天天出门,因此R值不需要设定的太短,否则天天在人家耳朵边喊:“来坐车来坐车”,也太过度骚扰用户了。
R值可以以周为单位分类。一周内有工作日和休息日,如果用户真的是刚需,那么最迟1周也该来坐一次车了(如下图)。
分好类以后,可以做交叉表,观察不同VIP的客户在R值分布情况(如下图)。在这里插入图片描述
看起来,VIP等级越高,R值越小,而VIP0的用户,居然有80%已经2周以上都没来了,要么真的没需求,要么已经流失了。这样,对VIP0的分析建议,也很清楚了:结合天气、节假日、活动等具体场景,给小额优惠,配合单次打车优惠券唤醒用户。
对于很高价值的:掏真金白银,维护好关系
对于很低价值的:定时唤醒,捞回来一个是一个
对于不高不低的,则要区分行为来看。
比如本案例中VIP1型用户,活跃度的两级分化很明显,一波人很活跃,一波人很沉默,而其消费能力都是差不多的。
此时可以有两个基本策略:
针对高活跃的,推出一个捆绑XX天的优惠套餐,锁定后续消费
针对低活跃的,在其沉睡一段时间以后,推出大额激励,拉动二次消费
这样的思路下,F就可以作为参考,从VIP1里,用F值区分出高低活跃两类人,之后制定具体策略。
在这里插入图片描述
这样就完成了一个简单的RFM分析,而且每个客群都有针对性业务建议给到哦。

如果只到这里就停下,那就太可惜了!因为RFM模型价值远远不止于此。

RFM的变型

RFM的真正价值,在于:它是一种利用时间、频次、数量关系,区分轻重度用户的方法。在很多业务场景下,都可以用类似的思路解决问题。

比如:考察用户的活跃行为,也可以分为RFA

R(Recency):最近一次活跃距今时间
F(Frequency):最近1周内活跃频次
A(amount):最近1周内累计活跃时长

这时候,RFA组合,也能清晰地区分出轻重度用户。并且,根据RFA组合,还能找到下一步运营思路,比如以下两个用户,看起来大体相似,但可以根据行为特点,设置不同的内容推荐方案,激活用户:
在这里插入图片描述

RFM的缺点

注意,RFM的缺点是很明显的:它仅仅考虑了用户的行为数量,没有考虑用户在干什么。比如用RFM考察用户消费,就少了一个关键内容:用户买的是啥。同样的RFM数值,可能情况完全不一样,比如:

R:距今30天未消费
F:最近1个月仅1次消费
M:1000元

在RFM分类里,符合上述条件的是同一类客户。可是,如果我们发现:

A用户:趁大促销,囤了1000元洗发水、沐浴露、护发素、纸巾
B用户:趁大促销,买了个1000元的空调

那即使RFM分类一致,我们也知道,A与B用户是完全不同的两类人,应该采用2类激活消费的策略。因此,RFM模型可以用,但是要结合用户消费品类,做细化思考哦。

逻辑树模型

在这里插入图片描述

互联网通用模型AARRR、八角分析法

2.3.1 AARRR

分析用户如何增长?如何提高留存?如何分析一个APP?
AARRR模型:
在这里插入图片描述在这里插入图片描述

参考:用户增长模型AARRR、策略&增长黑客十大案例

2.3.2 游戏化用户增长策略-八角模型

使命:赋予用户游戏的使命与意义(蚂蚁森林)。
成就:达成某个规则后获得物质(证书)。
创造:英雄联盟100多个英雄角色。
所有权:线上种树种出的果实可以寄给你(拼多多种树)。
社交:用户在游戏中找到圈子。
未知与好奇:盲盒、抢红包。
亏损:给用户不来就亏了的感觉(拼多多砍一刀)。
稀缺:限定
拼多多的砍一刀是典型的八角模型。

八角行为分析模型:把用户引到你的“圈套”里

数据分析方法

分析方法,即从数据中得出有业务意义的结论。

1.1 占比分析

通过各品类在总体中所占的百分比获取信息
如,核心指标是直播间数量的分析:
在这里插入图片描述

从占比可以看出,个人管理类的直播间最受欢迎,其中创业商业类最受关注。职业教育占比极少,是一个蓝海。

1.2 趋势分析

通过观察事物的发展趋势,可以推理出产生此现象的原因、给出解决方案等。
如,全年的直播观看次数变化趋势:
在这里插入图片描述

一月份总体观看人数最少,其原因是年底直播的人数较少,中后期有一个大幅度的下滑是在过年期间。一月底到二月初,由于线上复工,直播数量增多,直播观看次数也陡增。二月、三月期间,由于一部分不喜欢看直播或者一部分人喜欢上了看直播,所以变化的浮动比较大。清明公祭期间全面禁娱,因此观看人数为零。到后期之后,直播间数量及观看人数趋于稳定。

1.3 对比分析

跟自己比:同比、环比
跟其他比:在整个行业中的市场份额、与竞对方对比优劣
在这里插入图片描述

个人管理类门槛较低,因此数量最多,竞争力也最大,导致增长率不高。职业教育类门槛较高,因此数量最少,但是增长率是最高的。

1.4 象限分析

分群策略:用两个以上核心指标将业务对象按照象限划分
如,直播间观看次数与时长:
在这里插入图片描述

以整体平均为坐标原点,第一象限中观看的时长更长、观看次数更多、观看人数更多,第三象限中观看的时长较少、观看的次数较少、观看的人数较少,第二、四象限中没有数据。观看时长与观看次数大致是呈正比关系。第一象限中的品类时长更长,由此可见,这些品类的体系较为完整,观看时长提升了,观看次数和观看人数自然会增多。相反,第三象限中的品类时长较少,相应地,观看次数与人数自然会更少。
在提出解决方案时可对其进行更细粒度的展开,找出每个品类的更细品类(二级品类),通过分析二级品类的观看次数与直播间数的现象分析,找出用户的兴趣偏好与需求,可以适当砍掉直播间数多但是观看次数少的直播间,适当增加观看次数多但是直播间数量少的直播间。

1.5 排名分析

类似二八定律,及百分之八十的财富由百分之二十的人创造。运用到数据分析中,可以观察排名数据的帕累托图,长尾效应越明显,则该数据越是不健康,说明资源不平均,面对的风险越大。

1.6 维度分析

维度作为趋势、对比、占比等分析的关键因子,其粒度越小,越能找出问题的关键所在,越容易找出解决问题的方案。
如,常见业务的维度:
一级品类:职业、兴趣等
二级品类:职业可分哪些,兴趣又可分为哪些
常见的指标:
TGI指数(Target Group Index) = (目标群体中具有某一特征的群体所占比例 / 总体中具有相同特征的群体所占比例) * 100
在这里插入图片描述

意义:100代表平均水平,高于100,代表该类用户对某类问题的关注程度高于整体水平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT从业者张某某

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值