1.查询
1.创建数据库、数据表
-- 创建数据库
create database python_test_1 charset=utf8;
-- 使用数据库
use python_test_1;
-- students表
create table students(
id int unsigned primary key auto_increment not null,
name varchar(20) default '',
age tinyint unsigned default 0,
height decimal(5,2),
gender enum('男','女','中性','保密') default '保密',
cls_id int unsigned default 0,
is_delete bit default 0
);
-- classes表
create table classes (
id int unsigned auto_increment primary key not null,
name varchar(30) not null
);
2.准备数据
-- 向students表中插入数据
insert into students values
(0,'小明',18,180.00,2,1,0),
(0,'小月月',18,180.00,2,2,1),
(0,'彭于晏',29,185.00,1,1,0),
(0,'刘德华',59,175.00,1,2,1),
(0,'黄蓉',38,160.00,2,1,0),
(0,'凤姐',28,150.00,4,2,1),
(0,'王祖贤',18,172.00,2,1,1),
(0,'周杰伦',36,NULL,1,1,0),
(0,'程坤',27,181.00,1,2,0),
(0,'刘亦菲',25,166.00,2,2,0),
(0,'金星',33,162.00,3,3,1),
(0,'静香',12,180.00,2,4,0),
(0,'郭靖',12,170.00,1,4,0),
(0,'周杰',34,176.00,2,5,0);
-- 向classes表中插入数据
insert into classes values (0, "python_01期"), (0, "python_02期");
3.查询
- 查询所有字段
select * from 表名;
例:
select * from students;
- 查询指定字段
select 列1,列2,... from 表名;
例:
select name from students;
- 使用 as给字段起别名
select id as 序号, name as 名字, gender as 性别 from students;
- 可以通过 as 给表起别名
-- 如果是单表查询 可以省略表明
select id, name, gender from students;
-- 表名.字段名
select students.id,students.name,students.gender from students;
-- 可以通过 as 给表起别名
select s.id,s.name,s.gender from students as s;
- 在select后面列前使用distinct可以消除重复的行
select distinct 列1,... from 表名;
例:
select distinct gender from students;
2.条件
使用where子句对表中的数据筛选,结果为true的行会出现在结果集中
- 语法如下:
select * from 表名 where 条件;
例:
select * from students where id=1;
- where后面支持多种运算符,进行条件的处理
- 比较运算符
- 逻辑运算符
- 模糊查询
- 范围查询
- 空判断
1.比较运算符
- 等于: =
- 大于: >
- 大于等于: >=
- 小于: <
- 小于等于: <=
- 不等于: != 或 <>
例1:查询编号大于3的学生
select * from students where id > 3;
例2:查询编号不大于4的学生
select * from students where id <= 4;
例3:查询姓名不是“黄蓉”的学生
select * from students where name != '黄蓉';
例4:查询没被删除的学生
select * from students where is_delete=0;
2.逻辑运算符
- and
- or
- not
例5:查询编号大于3的女同学
select * from students where id > 3 and gender=0;
例6:查询编号小于4或没被删除的学生
select * from students where id < 4 or is_delete=0;
3.模糊查询
- like
- %表示任意多个任意字符
- _表示一个任意字符
例7:查询姓黄的学生
select * from students where name like '黄%';
例8:查询姓黄并且“名”是一个字的学生
select * from students where name like '黄_';
例9:查询姓黄或叫靖的学生
select * from students where name like '黄%' or name like '%靖';
4.范围查询
- in表示在一个非连续的范围内
例10:查询编号是1或3或8的学生
select * from students where id in(1,3,8);
- between … and …表示在一个连续的范围内
例11:查询编号为3至8的学生
select * from students where id between 3 and 8;
例12:查询编号是3至8的男生
select * from students where (id between 3 and 8) and gender=1;
5.空判断
- 注意:null与’'是不同的
- 判空is null
例13:查询没有填写身高的学生
select * from students where height is null;
- 判非空is not null
例14:查询填写了身高的学生
select * from students where height is not null;
例15:查询填写了身高的男生
select * from students where height is not null and gender=1;
6.优先级
- 优先级由高到低的顺序为:小括号,not,比较运算符,逻辑运算符
- and比or先运算,如果同时出现并希望先算or,需要结合()使用
3.排序
为了方便查看数据,可以对数据进行排序
1.语法
select * from 表名 order by 列1 asc|desc [,列2 asc|desc,...]
2.说明
- 将行数据按照列1进行排序,如果某些行列1的值相同时,则按照列2排序,以此类推
- 默认按照列值从小到大排列(asc)
- asc从小到大排列,即升序
- desc从大到小排序,即降序
例1:查询未删除男生信息,按学号降序
select * from students where gender=1 and is_delete=0 order by id desc;
例2:查询未删除学生信息,按名称升序
select * from students where is_delete=0 order by name;
例3:显示所有的学生信息,先按照年龄从大–>小排序,当年龄相同时 按照身高从高–>矮排序
select * from students order by age desc,height desc;
4.聚合函数
为了快速得到统计数据,经常会用到如下5个聚合函数
1.总数
count(*)
表示计算总行数,括号中写星与列名,结果是相同的
例1:查询学生总数
select count(*) from students;
2.最大值
max(列)
表示求此列的最大值
例2:查询女生的编号最大值
select max(id) from students where gender=2;
3.最小值
min(列)
表示求此列的最小值
例3:查询未删除的学生最小编号
select min(id) from students where is_delete=0;
4.求和
sum(列)
表示求此列的和
例4:查询男生的总年龄
select sum(age) from students where gender=1;
-- 平均年龄
select sum(age)/count(*) from students where gender=1;
5.平均值
avg(列)
表示求此列的平均值
例5:查询未删除女生的编号平均值
select avg(id) from students where is_delete=0 and gender=2;
5.分组
1.group by
- group by的含义:将查询结果按照1个或多个字段进行分组,字段值相同的为一组
- group by可用于单个字段分组,也可用于多个字段分组
select * from students;
+----+-----------+------+--------+--------+--------+-----------+
| id | name | age | height | gender | cls_id | is_delete |
+----+-----------+------+--------+--------+--------+-----------+
| 1 | 小明 | 18 | 180.00 | 女 | 1 | |
| 2 | 小月月 | 18 | 180.00 | 女 | 2 | |
| 3 | 彭于晏 | 29 | 185.00 | 男 | 1 | |
| 4 | 刘德华 | 59 | 175.00 | 男 | 2 | |
| 5 | 黄蓉 | 38 | 160.00 | 女 | 1 | |
| 6 | 凤姐 | 28 | 150.00 | 保密 | 2 | |
| 7 | 王祖贤 | 18 | 172.00 | 女 | 1 | |
| 8 | 周杰伦 | 36 | NULL | 男 | 1 | |
| 9 | 程坤 | 27 | 181.00 | 男 | 2 | |
| 10 | 刘亦菲 | 25 | 166.00 | 女 | 2 | |
| 11 | 金星 | 33 | 162.00 | 中性 | 3 | |
| 12 | 静香 | 12 | 180.00 | 女 | 4 | |
| 13 | 周杰 | 34 | 176.00 | 女 | 5 | |
| 14 | 郭靖 | 12 | 170.00 | 男 | 4 | |
+----+-----------+------+--------+--------+--------+-----------+
select gender from students group by gender;
+--------+
| gender |
+--------+
| 男 |
| 女 |
| 中性 |
| 保密 |
+--------+
根据gender字段来分组,gender字段的全部值有4个’男’,‘女’,‘中性’,‘保密’,所以分为了4组 当group by单独使用时,只显示出每组的第一条记录, 所以group by单独使用时的实际意义不大
2.group by + group_concat()
- group_concat(字段名)可以作为一个输出字段来使用,
- 表示分组之后,根据分组结果,使用group_concat()来放置每一组的某字段的值的集合
select gender from students group by gender;
+--------+
| gender |
+--------+
| 男 |
| 女 |
| 中性 |
| 保密 |
+--------+
select gender,group_concat(name) from students group by gender;
+--------+-----------------------------------------------------------+
| gender | group_concat(name) |
+--------+-----------------------------------------------------------+
| 男 | 彭于晏,刘德华,周杰伦,程坤,郭靖 |
| 女 | 小明,小月月,黄蓉,王祖贤,刘亦菲,静香,周杰 |
| 中性 | 金星 |
| 保密 | 凤姐 |
+--------+-----------------------------------------------------------+
select gender,group_concat(id) from students group by gender;
+--------+------------------+
| gender | group_concat(id) |
+--------+------------------+
| 男 | 3,4,8,9,14 |
| 女 | 1,2,5,7,10,12,13 |
| 中性 | 11 |
| 保密 | 6 |
+--------+------------------+
3.group by + 集合函数
- 通过group_concat()的启发,我们既然可以统计出每个分组的某字段的值的集合,那么我们也可以通过集合函数来对这个
值的集合
做一些操作
select gender,group_concat(age) from students group by gender;
+--------+----------------------+
| gender | group_concat(age) |
+--------+----------------------+
| 男 | 29,59,36,27,12 |
| 女 | 18,18,38,18,25,12,34 |
| 中性 | 33 |
| 保密 | 28 |
+--------+----------------------+
分别统计性别为男/女的人年龄平均值
select gender,avg(age) from students group by gender;
+--------+----------+
| gender | avg(age) |
+--------+----------+
| 男 | 32.6000 |
| 女 | 23.2857 |
| 中性 | 33.0000 |
| 保密 | 28.0000 |
+--------+----------+
分别统计性别为男/女的人的个数
select gender,count(*) from students group by gender;
+--------+----------+
| gender | count(*) |
+--------+----------+
| 男 | 5 |
| 女 | 7 |
| 中性 | 1 |
| 保密 | 1 |
+--------+----------+
4.group by + having
- having 条件表达式:用来分组查询后指定一些条件来输出查询结果
- having作用和where一样,但having只能用于group by
select gender,count(*) from students group by gender having count(*)>2;
+--------+----------+
| gender | count(*) |
+--------+----------+
| 男 | 5 |
| 女 | 7 |
+--------+----------+
5.group by + with rollup
- with rollup的作用是:在最后新增一行,来记录当前列里所有记录的总和
select gender,count(*) from students group by gender with rollup;
+--------+----------+
| gender | count(*) |
+--------+----------+
| 男 | 5 |
| 女 | 7 |
| 中性 | 1 |
| 保密 | 1 |
| NULL | 14 |
+--------+----------+
select gender,group_concat(age) from students group by gender with rollup;
+--------+-------------------------------------------+
| gender | group_concat(age) |
+--------+-------------------------------------------+
| 男 | 29,59,36,27,12 |
| 女 | 18,18,38,18,25,12,34 |
| 中性 | 33 |
| 保密 | 28 |
| NULL | 29,59,36,27,12,18,18,38,18,25,12,34,33,28 |
+--------+-------------------------------------------+
6.分页
1.语法
select * from 表名 limit start,count
2.说明
- 从start开始,获取count条数据
例1:查询前3行男生信息
select * from students where gender=1 limit 0,3;
3.示例
- 已知:每页显示m条数据,当前显示第n页
- 求总页数:此段逻辑后面会在python中实现
- 查询总条数p1
- 使用p1除以m得到p2
- 如果整除则p2为总数页
- 如果不整除则p2+1为总页数
- 求第n页的数据
select * from students where is_delete=0 limit (n-1)*m,m