004_挑战14天深度学习笔记
飞鸡110
不负我心,不负我生
展开
-
ML入门之开发平台
章节名称:第一章 Python语言初识 主要内容: Python与其他编程语言比较,Python 2与Python 3的选择,安装、运行Python。Notebook基本操作、魔法命令、Notebook显示系统、定制Notebook。 基本要求:通过一些真实的Python程序来了解这门语言的概貌、能力以及在真实世界中的用途。了解并掌握Notebook基本操作,了解并熟悉常用Notebook魔法命令,了解Notebook显示系统操作,了解并掌握一定的Notebook定制方法。 重点: Python开发...原创 2020-05-13 17:40:25 · 304 阅读 · 0 评论 -
Task08
文本情感分类 文本情感分类数据 + 读取数据 + 预处理数据 + 创建数据迭代器 使用循环神经网络 双向循环神经网络 加载预训练的词向量 训练模型 评价模型 使用卷积神经网络 一维卷积层 时序最大池化层 TextCNN 模型 训练并评价模型 数据增强 图像增广 9.1.1 常用的图像增广方法 9.1.1.1 翻转和裁剪 9.1.1.2 变化颜色 9.1.1.3 叠加多个图像增...原创 2020-02-26 21:09:24 · 78 阅读 · 0 评论 -
Task07
优化算法进阶 11.6 Momentum An ill-conditioned Problem Maximum Learning Rate Supp: Preconditioning Solution to ill-condition Momentum Algorithm Exponential Moving Average Supp 由指数加权移动平均理解动量法 Implement P...原创 2020-02-26 21:03:59 · 92 阅读 · 0 评论 -
Task06
批量归一化和残差网络 批量归一化(BatchNormalization) 对输入的标准化(浅层模型) 批量归一化(深度模型) 1.对全连接层做批量归一化 2.对卷积层做批量归⼀化 3.预测时的批量归⼀化 从零实现 基于LeNet的应用 简洁实现 残差网络(ResNet) 残差块(Residual Block) ResNet模型 稠密连接网络(DenseNet) 主要构建模块: 稠密块 过渡...原创 2020-02-26 20:49:56 · 90 阅读 · 0 评论 -
Task5
卷积神经网络基础 循环神经网络的构造 从零开始实现循环神经网络 one-hot向量 初始化模型参数 定义模型 裁剪梯度 定义预测函数 困惑度 定义模型训练函数 训练模型并创作歌词 循环神经网络的简介实现 定义模型 leNet lenet 模型介绍 lenet 网络搭建 运用lenet进行图像识别-fashion-mnist数据集 卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层...原创 2020-02-18 17:17:38 · 93 阅读 · 0 评论 -
Task4
机器翻译及相关技术 机器翻译和数据集 数据预处理 分词 建立词典 载入数据集 Encoder-Decoder Sequence to Sequence模型 模型: 具体结构: Encoder Decoder 损失函数 训练 测试 Beam Search 注意力机制与Seq2seq模型 注意力机制 注意力机制框架 Softmax屏蔽 点积注意力 测试 多层感知机注意力 测试 总结 引入注意力机...原创 2020-02-18 16:54:02 · 76 阅读 · 0 评论 -
Task 3
待建原创 2020-02-18 16:46:16 · 98 阅读 · 0 评论 -
线性回归
线性回归 基本要素(model,data set,loss function,优化函数) 解析解(公式)与数值解(优化算法有限次迭代模型参数) 小批量随机梯度 先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。在每次迭代中,先随机均匀采样一个由固定数目训练数据样本所组成的小批量(mini-batch),然后求小批量中数据样本的平均损失有关...原创 2020-02-14 16:06:15 · 96 阅读 · 0 评论