回溯算法模版

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

回溯算法和递归是相辅相成的,有回溯必定有递归,有递归不一定有回溯。回溯是一个纯暴力的算法,并不是什么高效的好算法,但是有些问题只能靠回溯。

一、应用场景

  1. 组合问题
    例如找出1234中可以两两组合的个数 12 13 14 23 24 34

  2. 切割问题
    例如给定一个字符串加一个条件,问有几种切割的方式

  3. 子集问题
    例如组合1234的子集个数

  4. 排列问题
    排列强调顺序,组合不强调

  5. 棋盘问题

二、模版

void backtracing(参数)
{
	if(终止条件){
		收集结果;
		return;
	}
	for(集合元素)
	{
		处理节点;
		递归函数;
		回溯操作; // 撤销处理节点
	}
}

三、案例

1、组合

组合1
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合

vector<vector<int>> res;
    vector<int> temp;
    void backtracing(int n, int k, int index){
        if(temp.size() == k){
            res.push_back(temp);
            return;
        }
        for(int i=index; i<=n; i++){
            temp.push_back(i);
            backtracing(n, k, i+1);
            temp.pop_back();
        }
    }
    vector<vector<int>> combine(int n, int k) {
        backtracing(n, k, 1);
        return res;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值