提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
回溯算法和递归是相辅相成的,有回溯必定有递归,有递归不一定有回溯。回溯是一个纯暴力的算法,并不是什么高效的好算法,但是有些问题只能靠回溯。
一、应用场景
-
组合问题
例如找出1234中可以两两组合的个数 12 13 14 23 24 34 -
切割问题
例如给定一个字符串加一个条件,问有几种切割的方式 -
子集问题
例如组合1234的子集个数 -
排列问题
排列强调顺序,组合不强调 -
棋盘问题
二、模版
void backtracing(参数)
{
if(终止条件){
收集结果;
return;
}
for(集合元素)
{
处理节点;
递归函数;
回溯操作; // 撤销处理节点
}
}
三、案例
1、组合
组合1
给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合
vector<vector<int>> res;
vector<int> temp;
void backtracing(int n, int k, int index){
if(temp.size() == k){
res.push_back(temp);
return;
}
for(int i=index; i<=n; i++){
temp.push_back(i);
backtracing(n, k, i+1);
temp.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
backtracing(n, k, 1);
return res;
}