- 问题分析
暴力解法:
如果n!=k* ,其中k不能被10整除,则n!末尾有m个0。对n!进行质因数分解, ,由于10=2*5,所以m只与x和z有关,每一对2和5相乘可以得到一个10,于是m=min(x,z)。因为能被2整除的数比能被5整除的数多,则x>=z,所以m=z。因此,只要计算出z的值,就可以得到n!末尾的0的个数!
2.解决方法
(一).解法一
计算i(i,2,3……,n)的因式分解中5的指数,然后求和
#include <stdio.h>
int main()
{
int n,sum=0;
scanf("%d",&n);
for(int i=5;i<=n;i+=5)
{
int j=i;
while(!(j%5))
{
j/=5;
sum++;
}
}
printf("%d!中0的个数是%d\n",n,sum);
return 0;
}
时间复杂度:)
(二).解法二
z=[n/5]+[n/5^2]+[n/5^3]+... s.t. n >= 5^k
#include <stdio.h>
#include <math.h>
int main()
{
int n,i=5,sum=0;
scanf("%d",&n);
while(n>=i)
{
sum+=ceil(n/i);
i*=5;
}
printf("%d!对应值的0的个数是%d\n",n,sum);
return 0;
}
时间复杂度为:
很显然,第二种解法的时间复杂度较第一种明显降低!