模型选择与拟合

模型选择
训练误差:模型在训练数据上的误差
泛化误差:模型在新数据上的误差
验证数据集:一个用来评估模型好坏的数据集,选择模型的超参数
测试数据集:只用一次的数据集
K-则交叉验证:数据集不够
欠拟合和过拟合
过拟合(overfitting):将模型在训练数据上拟合的比在潜在分布中更接近的现象
正则化(regularization):用于对抗过拟合的技术
在这里插入图片描述
模型容量:拟合各种函数的能力,低容量的模型难以拟合训练数据,高容量的模型可以记住所有的训练数据
在这里插入图片描述
模型容量对拟合的影响
在这里插入图片描述

拟合函数:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值