自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(73)
  • 收藏
  • 关注

原创 昇思MindSpore学习总结二十二 —— MindNLP ChatGLM-6B StreamChat

本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。

2024-07-29 23:31:29 228

原创 昇思MindSpore学习总结二十一 —— 文本解码原理(以MindNLP为例)

Beam search通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。缺点: 错过了隐藏在低概率词后面的高概率词,如:dog=0.5, has=0.9!按照贪心搜索输出序列("The","nice","woman") 的条件概率为:0.5 x 0.4 = 0.2。选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样。一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘机。将出现过的候选词的概率设置为 0。

2024-07-29 22:20:10 642

原创 昇思MindSpore学习总结二十 —— Pix2Pix实现图像转换

Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。生成器和判别器。传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。

2024-07-28 22:27:54 1396

原创 昇思MindSpore学习总结十九 —— Diffusion扩散模型

本文基于一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请确保执行环境安装了GUI界面。

2024-07-27 23:34:50 653

原创 昇思MindSpore学习总结十九 —— GAN图像生成

生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文生成器的任务是生成看起来像训练图像的“假”图像;判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。

2024-07-26 22:37:39 817

原创 昇思MindSpore学习总结十八 —— DCGAN生成漫画头像

生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文中首次进行了描述,其主要由两个不同的模型共同组成——生成器(Generative Model)和判别器(Discriminative Model):生成器的任务是生成看起来像训练图像的“假”图像;判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。

2024-07-24 22:03:12 611

原创 昇思MindSpore学习总结十八 —— CycleGAN图像风格迁移互换

CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。

2024-07-22 23:18:30 613

原创 昇思MindSpore学习总结十七 —— 基于MindSpore通过GPT实现情感分类

以便在使用MindSpore和MindNLP进行深度学习任务时能使用各种功能,比如数据集处理、模型训练、评估和回调功能。 3、加载IMDB数据集 并将其分为训练集和测试集。函数会返回一个包含数据集各个部分的字典,然后你可以通过键 和 来访问相应的数据。 用于返回数据集中包含的样本数量。这个方法的返回值通常是一个整数,表示训练集中有多少个样本。 将输入文本数据进行tokenization,并根据设备类型选择不同的批处理方式。如果需要,还可以对数据集进行打

2024-07-21 22:32:10 994

原创 昇思MindSpore学习总结十六 —— 基于MindSpore的GPT2文本摘要

本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。因GPT2无中文的tokenizer,我们使用BertTokenizer替代。下面这段代码,运行时间较长,最好选择较高算力。数据处理,将向量数据变为中文数据。配置不够,训练时间太长。

2024-07-20 22:33:43 391

原创 昇思MindSpore学习总结十五 ——基于Mindspore 实现BERT对话情绪识别

BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构,因此一定要熟练掌握Transformer的Encoder的结构。

2024-07-12 23:17:53 1234

原创 昇思MindSpore学习总结十四 —— Vision Transformer图像分类

近些年,随着基于自注意(self-Attention)结构的模型发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展,由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶,在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好地效果。

2024-07-11 23:39:42 1080

原创 昇思MindSpore学习总结十三 —— SSD目标检测

SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用Nvidia Titan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS;对于512x512的网络,达到了76.9%mAP ,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。

2024-07-10 22:15:27 929

原创 昇思MindSpore学习总结十二 —— ShuffleNet图像分类

ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。

2024-07-09 23:04:49 912

原创 昇思MindSpore学习总结十一 —— ResNet50图像分类

ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。

2024-07-07 23:01:13 748

原创 昇思MindSpore学习总结十——ResNet50迁移学习

在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。

2024-07-06 23:57:20 1136

原创 昇思MindSpore学习总结九——FCN语义分割

全卷积网络(Fully Convolutional Networks,FCN)是UC Berkeley的Jonathan Long等人于2015年在Fully Convolutional Networks for Semantic Segmentation[1]一文中提出的用于图像语义分割的一种框架。

2024-07-04 23:24:37 923

原创 昇思MindSpore学习总结八——静态图加速

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。

2024-07-03 10:26:51 747

原创 昇思MindSpore学习总结八——模型保存与加载

在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,接下来将介绍如何保存与加载模型。

2024-07-02 11:44:19 1080

原创 昇思MindSpore学习总结七——模型训练

从网络构建中加载代码,构建一个神经网络模型。#将数据从start_dim 到 end_dim 的维度,对输入Tensor进行展平#构造Cell顺序容器。nn.ReLU(),nn.ReLU(),超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:公式中,𝑛是批量大小(batch size),η是学习率(learning rate)。

2024-07-01 20:25:12 1355

原创 昇思MindSpore学习总结六——函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

2024-06-30 15:48:12 670

原创 昇思MindSpore学习总结五——网络构建

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

2024-06-29 21:20:37 1219

原创 昇思MindSpore学习总结四——数据变换Transforms

mindspore.dataset.transforms此模块用于通用数据增强,其中一部分增强操作是用C++实现的,具有较好的高性能,另一部分是基于Python实现,使用了NumPy模块作为支持。

2024-06-28 21:43:09 1087

原创 昇思MindSpore学习总结三——数据集dataset

数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。mindspore.dataset提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。

2024-06-27 13:27:10 1253

原创 昇思MindSpore学习总结二——张量

mindspore中张量的创建与使用。

2024-06-26 23:30:55 1047

原创 昇思MindSpore学习总结一

过MindSpore的API来快速实现一个简单的深度学习模型。

2024-06-25 23:28:22 787

原创 机器视觉——图像初处理

彩色图像的颜色空间也称为颜色模型或彩色系统,我们都知道,人眼看到的色彩图像都是光的反射形成的。在图像处理中,图像需要通过不同的颜色模型展现。常用的颜色空间有RGB、YCrCb、HSV、GRAY等。

2023-12-29 12:29:57 1246 1

原创 机器视觉——cv2窗口

cv2.imshow()函数在显示图像时,指定的窗口如果不存在,则会按默认设置创建一个窗口,窗口大小由图像大小决定,且不能更改。

2023-12-28 15:52:17 1093

原创 图像处理——基础操作

OpenCV进行图像的获取、视频的抓取,进行相应的读取和保存。

2023-12-28 11:16:23 1036

原创 机器学习——支持向量机

支持向量机(Support Vector Machine,SVM)的基本思想是在N维数据找到N-1维的超平面(hyperplane)作为分类的决策边界。

2023-12-27 14:25:15 2592

原创 机器学习——朴素贝叶斯

朴素贝叶斯算法或朴素贝叶斯分类器(Naive Bayes Classifier,NBC)发源于古典数学理论,是基于贝叶斯理论与特征条件独立假设的分类方法,通过单独考量每一特征被分类的条件概率作出分类预测。

2023-12-27 10:40:22 1619

原创 机器学习——线性模型(二)

线性回归最小二乘法的两种求解方法(即优化方法)分别是正规方程和梯度下降。

2023-12-27 08:52:16 1099

原创 机器学习——线性模型

在机器学习领域,常见的线性模型有线性回归、逻辑回归、岭回归等。其中,线性回归是利用数理统计中的回归分析来确定两种或两种以上变量相互依赖的定量关系的一种统计分析方法。

2023-12-26 16:05:55 1286 1

原创 机器学习——决策树(三)

采用决策树进行分类,要经过数据采集、特征向量化、模型训练和决策树可视化4个步骤。

2023-12-26 11:24:30 820

原创 机器学习——决策树(二)

决策树描述的是通过一系列规则对数据进行分类的过程。决策树分为分类树和回树两种,分类树的对离散变量进行决策,回归树用于对连续变量进行决策。

2023-12-26 09:22:38 1326

原创 机器学习——决策树(一)

决策树(decision tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于或等干0的概率,用以评价项且风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称为决策树。

2023-12-26 08:50:06 1638 1

原创 机器学习——KNN案例

KNN算法案例实现

2023-12-25 14:44:47 1550 1

原创 机器学习——KNN算法

KNN(K-Nearest Neighbor, K 近邻)算法是最简单的分类算法之一,它也是最常用的分类算法之一。

2023-12-25 14:20:46 1145

原创 机器学习——损失函数

损失函数(loss function)又称为误差函数(error function),是衡量模型好坏的标准,用于估量模型的预测值与真实值的不一致程度,是一个非负实值函数。损失函数的一般表示为L(y,f(x)),用以衡量真实值y与预测值f(x)不一致的程度,一般越小越好。

2023-12-22 10:05:47 2124

原创 机器学习——分类评价指标

对于模型的评价往往会使用损失函数和评价指标,两者的本质是一致的。一般情况下,损失函数应用于训练过程,而评价指标应用于测试过程。

2023-12-21 16:38:38 1621

原创 机器学习——模型评估与选择(拟合、)

拟合是指机器学习模型在训练的过程中,通过更新参数,使得模型不断契合可观测数据(训练集)的过程。

2023-12-21 12:51:33 1599

机器学习相关数据整理,包括鸢尾花、波士顿房价、泰坦尼克号等数据

数据内容为机器学习所需的相关数据:鸢尾花、波士顿房价、泰坦尼克号等数据。可用于pandas数据处理。 该内容可以直接读取,在python中,调用相关函数直接实现数据分析。 适用于初学者。

2024-03-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除