HJ16 购物单 动态规划 中等
描述
如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。
每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。
王强查到了每件物品的价格(都是 10 元的整数倍),而他只有 N 元的预算。除此之外,他给每件物品规定了一个重要度,用整数 1 ~ 5 表示。他希望在花费不超过 N 元的前提下,使自己的满意度达到最大。
满意度是指所购买的每件物品的价格与重要度的乘积的总和,假设设第i件物品的价格为v[i],重要度为w[i],共选中了k件物品,编号依次为j1,j2,…,jk,则满意度为:v[j1]∗w[j1]+v[j2]∗w[j2]+…+v[jk]∗w[jk]。(其中 * 为乘号)
请你帮助王强计算可获得的最大的满意度。
输入描述:
输入的第 1 行,为两个正整数N,m,用一个空格隔开:
(其中 N ( N<32000 )表示总钱数, m (m <60 )为可购买的物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出一个正整数,为张强可以获得的最大的满意度。
示例1
输入:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出:
2200 第2个和第3个都是第1个的附件。 选择第4和第5个 = 400*3 + 500*2 = 2200
示例2
输入:
50 5
20 3 5
20 3 5
10 3 0
10 2 0
10 1 0
输出:
130 第1个和第2个都是第5个的附件。 1、2、5 = 20*3+20*3+10*1=130
说明:
由第1行可知总钱数N为50以及希望购买的物品个数m为5;
第2和第3行的q为5,说明它们都是编号为5的物品的附件;
第4~6行的q都为0,说明它们都是主件,它们的编号依次为3~5;
所以物品的价格与重要度乘积的总和的最大值为10*1+20*3+20*3=130
参考代码
具体思路就是构造物品类,然后对主件判断是否有附件,若有附件则依次添加,根据主件、附件1、附件2的组合有四种情况
- 只有主件
- 主件+附件1
- 主件+附件2
- 主件+附件1+附件2
代码完全AC
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//第一行,N,M N表示总钱数,M表示可购买物品数
int money = sc.nextInt();
int n = sc.nextInt();
if(n<=0||money<=0) System.out.println(0);
good[] Gs = new good[n+1];
for (int i = 1; i <= n; i++) {
int v = sc.nextInt();
int p = sc.nextInt();
int q = sc.nextInt();
Gs[i] = new good(v,p,q);
if(q>0){
if(Gs[q].a1==0){
Gs[q].setA1(i);
}else {
Gs[q].setA2(i);
}
}
}
int[][] dp = new int[n+1][money+1];
for (int i = 1; i <= n; i++) {
int v=0,v1=0,v2=0,v3=0,tempdp=0,tempdp1=0,tempdp2=0,tempdp3=0;
v = Gs[i].v;
tempdp = Gs[i].p*v; //只有主件
if(Gs[i].a1!=0){//主件加附件1
v1 = Gs[Gs[i].a1].v+v;
tempdp1 = tempdp + Gs[Gs[i].a1].v*Gs[Gs[i].a1].p;
}
if(Gs[i].a2!=0){//主件加附件2
v2 = Gs[Gs[i].a2].v+v;
tempdp2 = tempdp + Gs[Gs[i].a2].v*Gs[Gs[i].a2].p;
}
if(Gs[i].a1!=0&&Gs[i].a2!=0){//主件加附件1和附件2
v3 = Gs[Gs[i].a1].v+Gs[Gs[i].a2].v+v;
tempdp3 = tempdp + Gs[Gs[i].a1].v*Gs[Gs[i].a1].p + Gs[Gs[i].a2].v*Gs[Gs[i].a2].p;
}
for(int j=1; j<=money; j++){
if(Gs[i].q > 0) { //当物品i是附件时,相当于跳过
dp[i][j] = dp[i-1][j];
} else {
dp[i][j] = dp[i-1][j];
if(j>=v&&v!=0) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v]+tempdp);
if(j>=v1&&v1!=0) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v1]+tempdp1);
if(j>=v2&&v2!=0) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v2]+tempdp2);
if(j>=v3&&v3!=0) dp[i][j] = Math.max(dp[i][j],dp[i-1][j-v3]+tempdp3);
}
}
}
System.out.println(dp[n][money]);
}
/**
* 定义物品类
*/
private static class good{
public int v; //物品的价格
public int p; //物品的重要度
public int q; //物品的主附件ID
public int a1=0; //附件1ID
public int a2=0; //附件2ID
public good(int v, int p, int q) {
this.v = v;
this.p = p;
this.q = q;
}
public void setA1(int a1) {
this.a1 = a1;
}
public void setA2(int a2) {
this.a2 = a2;
}
}
}