文本串T
模式串P
求出P在T中出现的位置
当T[i]与P[j]不匹配时
T[i]与P[j]的前j个是相匹配的
固定指针i,j移动到以P[j-1]为结尾的最长真相同前后缀的下一位
例如:
T="abbaabbbabaa"
P="abbaaba"
出现b a不匹配
这样指针i只需遍历一次T,时间复杂度明显降低
于是进行KMP算法时,最重要的是对模式串P的最长真前后缀的处理,即NXT数组(若不是真前后缀,可能会出现NXT[i-1]=i-1,即自己匹配自己的情况)
NXT[i]
存储以P[i]为结尾的最长相同真前后缀的下标
Nxt[0]=Nxt[1]=0;//下标从1开始,0不存在,1不存在真前后缀
for (int i=2,j=0;i<=n;i++)//构建 Nxt,当前的j=Nxt[i-1]
{
while (j&&p[j+1]!=p[i])//在p的范围里回溯到p[j+1]==p[i]
j=Nxt[j];
if (p[j+1]==p[i])//找到,下标+1
++j;
Nxt[i]=j;//没找到,j=0
}
for(int i=1,j=0;i<=n;i++)//i指向s当前要匹配的字符,j指向p当前要匹配的字符的前一位,s[i-j,i-1]=p[1,j]
{
while(j&&p[j+1]!=s[i])//j在p的范围内回溯到p[j+1]==s[i]
j=nxt[j];
if(p[j+1]==s[i])//找到,j后移
j++;
if(j==m)//全部匹配,记录下标
mat[i]=true,j=nxt[j];
}