一、什么是图像轮廓?
1、轮廓的基本概念:
构成图形或物体的外缘的线条。
2、轮廓检测:
轮廓检测指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程。它是目标检测、形状分析、目标识别和目标跟踪等技术的重要基础。
3、图像中的信号:
图像中的低频信号和高频信号也叫做低频分量和高频分量。 简单一点说,图像中的高频分量,指的是图像强度(亮度/灰度)变化剧烈的地方,也就是我们常说的边缘(轮廓);图像中的低频分量,指的是图像强度(亮度/灰度)变换平缓的地方,也就是大片色块的地方。 人眼对图像中的高频信号更为敏感,举个例子,在一张白纸上有一行字,那么我们肯定直接聚焦在文字上,而不会太在意白纸本身,这里文字就是高频信号,而白纸就是低频信号。
4、边缘和轮廓的区别:
边缘检测是检测图像的边缘 也就是图像差异比较大的地方
轮廓提取是提取出你想要得到的轮廓 轮廓可能是边缘的一部分
5、边缘和边界的区别:
在图像合成中单一物体的轮廓叫做边缘,画布的大小叫边界.
二、图像轮廓的作用:
1、轮廓检测通常过程:
求取图像(灰度或彩色)中物体轮廓的过程主要有四个步骤。
- 首先对输入图像做预处理,通用的方法是采用较小的二维高斯模板做平滑滤波处理,去除图像噪声。(采用小尺度的模板是为了保证后续轮廓定位的准确性,因为大尺度平滑往往会导致平滑过渡,从而模糊边缘,大大影响后续的边缘检测。)
- 其次对平滑后的图像做边缘检测处理,得到初步的边缘响应图像。(其中通常会涉及到亮度、颜色等可以区分物体与背景的可用梯度特征信息。)
- 然后再对边缘响应做进一步处理,得到更好的边缘响应图像。这个过程通常会涉及到判据,即对轮廓点和非轮廓点做出不同处理或用相同的程式因作用结果的不同而达到区分轮廓点和非轮廓点的效果,从而得到可以作为轮廓的边缘图像。(若是此步骤之前得到的轮廓响应非常好时,该步骤往往是不用再考虑的。然而在实际应用过程中,上一步骤得到的结果往往是不尽人意的。)
因此,此过程往往起着至关重要的作用,最后对轮廓进行精确定位处理,这个过程通常又分成两个过程。- 第一步先对边缘响应图像做细化处理,得到单像素边缘图像。这个过程普遍采用的是非最大值抑制方法(局部极大搜索)。非最大值抑制可以非常有效地细化梯度幅值图像中的屋脊带,从而只保留局部变化最大的点。本文的研究均采用此方法做细化处理。
- 第二步为在此基础上做基于滞后门限的二值化处理,滞后门限利用递归跟踪算法可以保证最后的轮廓图像是连续的。这一个过程往往在与标准轮廓(比如图像数据库中人为勾画的轮廓)做比较时才考虑,也就是说一个完整的轮廓检测算法往往是不包括该过程的。获取轮廓信息的另一种通用方法就是先对图像做分割,图像分割处理好后,直接将分割区域的边界作为轮廓。该方法最终的结果直接依赖于图像分割的效果,因此实际中多归于分割问题。
2、轮廓检测的分类(了解)
-
静态图像轮廓检测编
早期轮廓检测的方法通过局部的测量计算来量化一个给定图像位置的边界是否存在。Roberts算子,Sobel算子和Prewitt算子通过灰度图像和局部导数滤波器卷积进行边缘检测。Mary和Hildreth使用拉普拉斯算子的零交叉高斯算子。丰富的特征描述子可以通过对不同尺度的图像和多方向的滤波器的响应获得。- 目前,很多对于静态图像的目标轮廓提取,在检测过程中主要通过外观线索判断像素是否属于目标的轮廓,根据图像局部特征并基于学习策略进行轮廓判断。Arbelaez等利用一种叫做“双半圆盘”算子的梯度算子计算亮度、色彩、纹理多种外观线索的方向梯度特征,通过梯度上升得到各种外观线索的优化组合,生成的局部边缘检测器能有效去除目标内部纹理的虚假边缘。除此以外,他们还建立了一个具有轮廓和分割手工标记的图像轮廓和分割数据集作为自然场景轮廓和分割方法的统一标准。Dollar等以亮度、色彩线索为判定标准利用集成分类器对图像块分类,获取到图像块内的结构边缘信息,提升了处理效率。
同时,深度线索作为特殊的外观线索,可以辅助判断目标轮廓,Kinect深度相机得到的场景深度图像对光照变化和背景中颜色相近的物体的干扰具有鲁棒性。Leordeanu等结合图像的像素级表达和区域块表达,将不同类型边缘结构的局部定位应用于深度图像。徐玉华等采用活动轮廓对人体目标建模,提出一种新的水平集框架下自适应融合RGB-D图像的颜色和深度信息的人体轮廓跟踪方法。 - 静态图像轮廓检测对外观相似的目标和背景不具有识别力,背景的局部边缘干扰会导致目标的伪轮廓。因此越来越多的轮廓检测研究基于运动视频获
- 目前,很多对于静态图像的目标轮廓提取,在检测过程中主要通过外观线索判断像素是否属于目标的轮廓,根据图像局部特征并基于学习策略进行轮廓判断。Arbelaez等利用一种叫做“双半圆盘”算子的梯度算子计算亮度、色彩、纹理多种外观线索的方向梯度特征,通过梯度上升得到各种外观线索的优化组合,生成的局部边缘检测器能有效去除目标内部纹理的虚假边缘。除此以外,他们还建立了一个具有轮廓和分割手工标记的图像轮廓和分割数据集作为自然场景轮廓和分割方法的统一标准。Dollar等以亮度、色彩线索为判定标准利用集成分类器对图像块分类,获取到图像块内的结构边缘信息,提升了处理效率。