当前搜索:

tensorflow中屏蔽输出的log信息方法

tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息、警告、报错等输出信息。使用方法:import os import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LE...
阅读(1) 评论(0)

pycharm中tensorflow代码不能自动补全或import红线问题解决

正确安装并配置好pycharm+tensorflow环境之后,可能在pycharm中导入tensorflow会有以下问题:1. " import tensorflow as tf " 会有红线提示找不到tensorflow,但是运行的话可以正常运行2. tens...
阅读(2) 评论(0)

tensorflow中常用学习率更新策略

神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数更新的幅度。过小的学习率会降低网络优化的速度,增加训练时间,过大的学习率可能导致网络参数在最终的极...
阅读(11) 评论(0)

交叉熵损失函数和均方误差损失函数

交叉熵 分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉熵。 交叉熵(c...
阅读(14) 评论(0)

python中几个实用的文件操作

1. 判断指定目录是否存在:os.path.exists(input_folder)2. 判断指定目录是不是文件夹os.path.isdir(input_folder)3. 判断指定目录是不是文件os.path.isfile(input_folder)4. 判断指定文件是不是图片(判断给定文件是何...
阅读(16) 评论(2)

python 兼容中文路径 + 目标文件是否是图像格式判断

1. 中文路径兼容python程序如果路径中包含中文字符,不加处理会有类似报错:'ascii' codec can't decode byte 0xxx in position xx:ordinal not in range(128)解决方法:path = unicode(path,'utf-8'...
阅读(20) 评论(0)

tensorflow中 tf.add_to_collection、 tf.get_collection 和 tf.add_n函数

tf.add_to_collection(name, value)  用来把一个value放入名称是‘name’的集合,组成一个列表;tf.get_collection(key, scope=None) 用来获取一个名称是‘key’的集合中的所有元素,返回的是一个列表,列表的顺序是按照变量放入集合...
阅读(23) 评论(1)

tensorflow中summary操作

tf中 tensorboard 工具通过读取在网络训练过程中保存到本地的日志文件实现数据可视化,日志数据保存主要用到 tf.summary 中的方法。 tf.summary中summary是tf中的一个py文件,位置在 '/tensorflow/python/summary/' 文件夹下,提供了像...
阅读(35) 评论(1)

tensorflow中 tf.reduce_mean函数

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。reduce_mean(input_tensor, axis=None, ...
阅读(28) 评论(0)

tensorflow中共享变量 tf.get_variable 和命名空间 tf.variable_scope

tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享。tf通过 tf.get_variable() 可以建立或者获取一个共享的变量。 tf.get_variable函数的作用从tf的注释里就可以看出来-- ‘Gets an existing va...
阅读(21) 评论(0)

tensorflow中协调器 tf.train.Coordinator 和入队线程启动器 tf.train.start_queue_runners

TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行。在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止的时候, 队列必须能被正确地关闭。TensorFlow提供了两个类来实现对Session中多线程的...
阅读(54) 评论(0)

tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

tensorflow数据读取机制tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算。具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取。tf在内存队列之前,还设...
阅读(68) 评论(0)

tensorflow中tensor的静态维度和动态维度

tf中使用张量(tensor)这种数据结构来表示所有的数据,可以把张量看成是一个具有n个维度的数组或列表,张量会在各个节点之间流动,参与计算。张量具有静态维度和动态维度。在图构建过程中定义的张量拥有的维度是静态维度,这个维度可以被定义为不确定的,例如定义一个tensor的维度是[None,10],...
阅读(56) 评论(0)

tf.device()指定tensorflow运行的GPU或CPU设备

在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。设置使用GPU使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行:import tensorflow as tf with...
阅读(58) 评论(0)

tf.cast()数据类型转换

tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换,比如读入的图片如果是int8类型的,一般在要在训练前把图像的数据格式转换为float32。cast定义:cast(x, dtype, name=None)第一个参数 x:   待转换的数据(张量)第二个参数 dtype:...
阅读(36) 评论(0)

Tensorflow 模型文件结构、模型中Tensor查看

tensorflow训练后保存的模型主要包含两部分,一是网络结构的定义(网络图),二是网络结构里的参数值。1.  .meta文件.meta 文件以 “protocol buffer”格式保存了整个模型的结构图,模型上定义的操作等信息。这个文件保存了网络结构的定义。例如 model.ckpt-307...
阅读(116) 评论(0)

tensorflow命令行参数:tf.app.flags.DEFINE_string、tf.app.flags.DEFINE_integer、tf.app.flags.DEFINE_boolean

tf 中定义了 tf.app.flags.FLAGS ,用于接受从终端传入的命令行参数,相当于对Python中的命令行参数模块optpars(参考: python中处理命令行参数的模块optpars )做了一层封装。optpars中的参数类型是通过参数 “type=xxx” 定义的,tf中每个合法...
阅读(44) 评论(0)

让深度学习更高效运行的两个视角

原文链接: https://zhuanlan.zhihu.com/p/33693725作为顶尖的自动驾驶公司,Momenta一直专注于打造自动驾驶大脑,这一过程离不开深度学习的高效运行。2月1日晚,Momenta联合量子位吃瓜社栏目带来了Paper Reading第二季首期分享:让深度学习更高效运...
阅读(132) 评论(0)

如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载)

原文链接: https://www.jiqizhixin.com/articles/2017-03-06-2如果你现在还是个深度学习的新手,那么你问的第一个问题可能是「我应该从哪篇文章开始读呢?」在 Github 上,songrotek 准备了一套深度学习阅读清单,而且这份清单在随时更新。至于文中...
阅读(92) 评论(0)

为模型减减肥:谈谈移动 / 嵌入式端的深度学习

原文链接: http://www.zhiding.cn/techwalker/documents/J9UpWRDfVYHE5ToOGy30k4fU9v9ep3gPUOb3TSAsig本文为机器之心矽说专栏系列文章之一,对模型压缩进行了深度解读。1. 为什么要为深度学习模型减肥随着深度学习的发展,神...
阅读(98) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 128万+
    积分: 1万+
    排名: 1280
    博客专栏
    最新评论