并查集

参考
https://www.cnblogs.com/asdfknjhu/p/12515480.html
https://www.bilibili.com/video/BV13t411v7Fs?p=3
https://leetcode-cn.com/problems/number-of-provinces/solution/python-duo-tu-xiang-jie-bing-cha-ji-by-m-vjdr/

一、基本概念

并查集是一种数据结构
并查集这三个字,一个字代表一个意思。
(Union),代表合并
(Find),代表查找
(Set),代表这是一个以字典为基础的数据结构,它的基本功能是合并集合中的元素,查找集合中的元素
并查集的典型应用是有关连通分量的问题
并查集解决单个问题(添加,合并,查找)的时间复杂度都是 O(1) O(1) O(1)
因此,并查集可以应用到在线算法中

二、并查集的引入

假设有一个图如下图所示:
图片

问题:我们要判断该图有没有环?
如下图所示红线连接的就是一个环
在这里插入图片描述

第一步:将图中6个点平铺写开
在这里插入图片描述第二步:任意从图中的一个边开始,把所有的边都给遍历一遍,首先选择01之间的边,选择边后 我们把这条边所连接的两个顶点放到一个集合中,如下图示:
在这里插入图片描述选择12之间的边,选择边后 我们把这条边所连接的两个顶点放到一个集合中,1已经在集合中了,只需要把2放进去就可以了。集合的意义是该集合中的元素可以在图中相互走通的(即任意两个元素是直接或者间接相连的)如下图示:

在这里插入图片描述
选择34之间的边,选择边后 我们把这条边所连接的两个顶点放到一个集合中,3和4与上一个集合中的元素目前没有连接所以单独放在一个集合中。如下图示:
在这里插入图片描述
选择13之间的边,选择边后 我们把这条边所连接的两个顶点放到一个集合中,13分别在一个集合中,要让他们在一个集合中就要将13所在的集合合并。如下图示:
在这里插入图片描述
到目前为止我们使用过得边有(0,1)(1,2)(3,4)(1,3),由于我们选边的时候不会重复且边(0,1)和(1,0)是同一条边。如果接下来选边的时候(选边不重复),该边的两个端点出现在同一个集合中,则该集合元素可以构成一个环,即该图是有环的。如选择边24,24在集合中,所以可以构成环,该图有环。如图示:在这里插入图片描述
用代码实现的时候用树的结构来存储上面说的集合。在集合合并的时候如果一个边的两个结点所在的树(存储集合的)的根节点指向另一个树的根节点:

在这里插入图片描述在这里插入图片描述在这里插入图片描述
接下来找到边24 2的根和4的根相同都是4,这说明顶点2和4本身就在集合中(树上)。即有环。
在这里插入图片描述

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define VERTICES 6
int find_root(int x, int parent[])  // 找到根节点
{
    int x_root = x;
    while (parent[x_root] != -1)
    {
        x_root = parent[x_root];
    }
    return x_root;
}
int union_vertices(int x, int y, int parent[])  // 让两个集合合并
{
    int x_root = find_root(x, parent);
    int y_root = find_root(y, parent);
    if (x_root == y_root)
        return 0;
    else
    {
        parent[x_root] = y_root;
        return 1;
    }
}
int main(void)
{
    int parent[VERTICES] = { 0 };
    memset(parent, -1, sizeof(parent));   // 初始化
    int edges[6][2] = { {0,1},{1,2},{1,3},{2,4},{3,4},{2,5} }; // 边集

    for (int i = 0; i < 6; i++)
    {
        int x = edges[i][0];
        int y = edges[i][1];
        if (union_vertices(x, y, parent) == 0)
        {
            printf("Cycle detected!\n");
            system("pause");
            exit(0);
        }
    }
    printf("No cycle found.\n");

    system("pause");
    return 0;
}

三、根据Rank的合并(压缩路径)

为了避免树的构建出现链条形状,影响根的查询,所以在合并的时候让矮树的根节点指向高树的根节点。
在这里插入图片描述在这里插入图片描述在这里插入图片描述

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define VERTICES 6
int find_root(int x, int parent[])  // 找到根节点
{
    int x_root = x;
    while (parent[x_root] != -1)
    {
        x_root = parent[x_root];
    }
    return x_root;
}
int union_vertices(int x, int y, int parent[],int rank[])  // 让两个集合合并
{
    int x_root = find_root(x, parent);
    int y_root = find_root(y, parent);
    if (x_root == y_root)
        return 0;
    else
    {
        if (rank[x_root] > rank[y_root])  // 让 少的指向多 的
        {
            parent[y_root] = x_root;
        }
        else if (rank[x_root] < rank[y_root])
            parent[x_root] = y_root;
        else
        {
            parent[x_root] = y_root;   // 这个随便可以
            rank[y_root]++;
        }
        return 1;
    }
}
int main(void)
{
    int parent[VERTICES] = { 0 };
    int rank[VERTICES] = { 0 };
    memset(rank, 0, sizeof(rank));
    memset(parent, -1, sizeof(parent));
    int edges[6][2] = { {0,1},{1,2},{1,3},{2,4},{3,4},{2,5} };

    for (int i = 0; i < 6; i++)
    {
        int x = edges[i][0];
        int y = edges[i][1];
        if (union_vertices(x, y, parent,rank) == 0)
        {
            printf("Cycle detected!\n");
            system("pause");
            exit(0);
        }
    }
    printf("No cycle found.\n");

    system("pause");
    return 0;
}

python并查集模板分析

一、并查集的实现

1、集合树用字典存储的定义

并查集跟树有些类似,只不过她跟树是相反的。在树这个数据结构里面,每个节点会记录它的子节点。在并查集里,每个节点会记录它的父节点。
并查集使用的是字典来存储树,字典的键是子节点,值是父节点。并且把一个并查集的所有操作和存储结构封装到一个类中:

class UnionFind:

    def __init__(self):
        """
        记录每个节点的父节点
        """
        self.father = {}
       # self.value = {}  如果边有权重 # key 本节点名称 ,value 为本节点 到 根点的权值

在这里插入图片描述可以看到,如果节点是相互连通的(从一个节点可以到达另一个节点),那么他们在同一棵树里,或者说在同一个集合里,或者说他们的祖先是相同的。

2、初始化

当把一个新节点添加到并查集中,它的父节点应该为空

 def add(self,x):
        """
        添加新节点
        """
        if x not in self.father:
            self.father[x] = None

在这里插入图片描述

3、合并两个节点

如果发现两个节点是连通的(两个节点被一个边连接起来),那么就要把他们合并。然后如果他们的根是相同的(同属一棵树),则任选一个节点作为另一个结点的父节点。这里究竟把谁当做父节点一般是没有区别的。如果他们的根是不同的,则让一个树的根节点作为另一个数的根节点的父节点。

def merge(self,x,y,val):
        """
        合并两个节点
        """
        root_x,root_y = self.find(x),self.find(y) # 查找结点x和y的根节点  
        if root_x != root_y:						# 根节点不相同 则合并
            self.father[root_x] = root_y

在这里插入图片描述

4、查找一个节点的根节点

查找一个节点的根节点方法是:如果节点的父节点不为空,那就不断迭代。

def find(self,x):
        """
        查找根节点
        """
        root = x

        while self.father[root] != None:
            root = self.father[root]
        return root

在这里插入图片描述

5、路径压缩

这里有一个优化的点:如果我们树很深,比如说退化成链表,那么每次查询的效率都会非常低。所以我们要做一下路径压缩。也就是把树的深度固定为二。

这么做可行的原因是,并查集只是记录了节点之间的连通关系,而节点相互连通只需要有一个相同的根节点(祖先)就可以了。

路径压缩可以用递归,也可以迭代。这里用迭代的方法。

    def find(self,x):
        """
        查找根节点
        路径压缩
        """
        root = x

        while self.father[root] != None:
            root = self.father[root]

        # 路径压缩
        while x != root:
            original_father = self.father[x]
            self.father[x] = root
            x = original_father
         
        return root


路径压缩的时间复杂度为O(log⁡∗n)O(\log^*n)O(log∗n)
log⁡∗n\log^*nlog∗n 表示 n 取多少次log⁡2n\log_2nlog2​n并向下取整以后 变成 1
可以认为O(log⁡∗n)=O(1)O(\log^*n) = O(1)O(log∗n)=O(1),因为log⁡∗265536=5\log*2{65536} = 5log∗265536=5,而2655362^{65536}265536是一个天文数字。这个时间复杂度当成结论记下就可以。
在这里插入图片描述在这里插入图片描述

6、两节点是否连通

我们判断两个节点是否处于同一个连通分量的时候,就需要判断它们的根节点(祖先)是否相同

def is_connected(self,x,y):
        """
        判断两节点是否相连
        """
        return self.find(x) == self.find(y)

完整模板

class UnionFind:
    def __init__(self):
        """
        记录每个节点的父节点
        """
        self.father = {}
    
    def find(self,x):
        """
        查找根节点
        路径压缩
        每一次查找节点x的根节点的时候都对该节点进行路径压缩
        """
        root = x

        while self.father[root] != None:
            root = self.father[root]

        # 路径压缩
        while x != root:
            original_father = self.father[x]
            self.father[x] = root
            x = original_father
         
        return root
    
    def merge(self,x,y,val):
        """
        合并两个节点
        """
        root_x,root_y = self.find(x),self.find(y)
        
        if root_x != root_y:
            self.father[root_x] = root_y

    def is_connected(self,x,y):
        """
        判断两节点是否相连
        """
        return self.find(x) == self.find(y)
    
    def add(self,x):
        """
        添加新节点
        """
        if x not in self.father:
            self.father[x] = None
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值