C语言实现赫夫曼树、赫夫曼表、赫夫曼编码,注释详细哦~

通过下面的五个方法实现:

  1. 生成赫夫曼树 *void creHuffmanTree(int n,int m,int w, HTree HT)
  2. 创建赫夫曼编码 void cretHuffmanCoding(HTree HT, HuffmanCode hc, int n)
  3. 筛选最小值和次小值
    void select(HTree HT, int n, int * smallestIndex, int * secondSmallestIndex)
  4. 打印赫夫曼表 void printtable(HTree HT, int n)
  5. 打印赫夫曼码 void printCodes(HTree HT, HuffmanCode hc, int n)

代码:

#include <stdio.h>
#include <malloc.h>
#include <string.h>
#define INT_MAX 10000
//author : huxuehao
//自定义结构体 
typedef struct{
    int weight;
    int parent;
    int lchild;
    int rchild;
}HTNode, *HTree;
//存放赫夫曼编码
typedef char ** HuffmanCode;

//一、生成赫夫曼树
void creHuffmanTree(int n,int m,int *w, HTree HT);
//二、创建赫夫曼编码
void cretHuffmanCoding(HTree HT, HuffmanCode hc, int n);
//三、筛选最小值和次小值
void select(HTree HT, int n, int * smallestIndex, int * secondSmallestIndex);
//四、打印赫夫曼表
void printtable(HTree HT, int n);
//五、打印赫夫曼码
void printCodes(HTree HT, HuffmanCode hc, int n);

// 主程序
int main()
{
    int w[5] = {8,3,6,1,4};
    int n = 5;
    int m = 2 * n - 1;

	// 生成HTree类型的数组HT, 长度是m+1
    HTree HT = (HTree)malloc((m + 1) * sizeof(HTNode));
    creHuffmanTree(n, m, w, HT);
	
	//创建存放哈弗曼码的“二维数组”
	HuffmanCode HC = (HuffmanCode)malloc((n+1)*sizeof(char *));
	cretHuffmanCoding(HT, HC, n);

	printf("\nok\n");
	
	return 0;
}


// 一、生成赫夫曼树
// n 表示叶子节点的个数
// m 表示所生成赫夫曼树的节点的个数
// w 表示数组的首地址
// HT表示哈夫曼树
void creHuffmanTree(int n,int m,int *w, HTree HT)
{
	// 保证生成的赫夫曼树有意义
    if(n < 1 || HT == NULL){
        return;
    }

	// *HT相等于HT[0]
    //*HT = (HTNode){INT_MAX, 0, 0, 0};
	HT[0].weight = INT_MAX;
	HT[0].parent = 0;
	HT[0].lchild = 0;
	HT[0].rchild = 0;

	// 此处的 *p 相等于 HT[1]
    //HTree p = HT+1;

    int i;
	//将HTree数组中的下标1~n的‘值’初始化
    for(i=1; i<=n; ++i/*++p,++w*/){
        //*p=(HTNode){*w, 0, 0, 0};
		HT[i].weight = w[i-1];
		HT[i].parent = 0;
		HT[i].lchild = 0;
		HT[i].rchild = 0;
    }
	
	//将HTree数组中的下标n+1 ~ m的‘值’初始化
    for(; i<=m; ++i/*,++p*/){
        //*p=(HTNode){0, 0, 0, 0};
		HT[i].weight = 0;
		HT[i].parent = 0;
		HT[i].lchild = 0;
		HT[i].rchild = 0;
    }
	
	//打印一下目前的赫夫曼表
	//printtable(HT, n);
	
	

	// 第一次从1~n中寻找,第二次从1~(n+1)中寻找,...
    for(i=n; i <= m-1; ++i){
		// s(smalllest)用于存储最小的值, ss(second-smalllest)用于存储次小的值
		// 并将s、ss对应的值置为最大
		int s = 0;
		int ss= 0;
        select(HT, i, &s, &ss);
        HT[s].parent = i+1;
        HT[ss].parent = i+1;
        HT[i+1].lchild = s;
        HT[i+1].rchild = ss;
		// 给生成的父节点赋权值
        HT[i+1].weight = HT[s].weight + HT[ss].weight; 
    }
	
	//打印一下目前的赫夫曼表
	printtable(HT, n);

}


//二、创建赫夫曼编码
void cretHuffmanCoding(HTree HT, HuffmanCode hc, int n)
{
	char *cd;
	int i, start, p;
	int c;
	cd = (char *)malloc(n*sizeof(char)); //申请存放当前编码的工作空间
	cd[n-1] = '\0'; //因为从右向左逐位存放编码,所以首先存放编码结束符
	for(i=1; i<=n; i++) //计算n个叶子结点对应的赫夫曼编码
	{
		start = n-1; //初始化编码起始指针
		for(c=i,p=HT[i].parent; p!=0; c=p,p=HT[p].parent){//从叶子到根结点求编码
			if(HT[p].lchild==c) {
				cd[--start]='0'; //c为左节点 标0
			}
			else {
				cd[--start]='1'; //c为右节点 标1
			}
		}

		hc[i] = (char *)malloc((n-start)*sizeof(char)); //为第i个编码分配空间

		//strcpy(hc[i],&cd[start]);
		for(int j=0; j<n-start; j++)
			hc[i][j] = cd[start + j];
		
	}
	free(cd);
	//打印赫夫曼
	printCodes(HT, hc, n);
	
}


/*
*三、筛选最小值和次小值
*筛选最小值和次小值时,一个重要的条件是在父节点为0的节点中寻找
*HT:表示哈夫曼树
*n:表示在1~n中寻找
*smallestIndex:用于存放最小的索引
*secondSmallestIndex:用于存放次小的索引
*/  
void select(HTree HT, int n, int * smallestIndex, int * secondSmallestIndex)
{
    int i;

	//遍历1~n的元素
    for(i=1;i<=n;++i){
        if(HT[i].parent == 0){
            if(HT[i].weight < HT[*smallestIndex].weight){
				//如果当前的值小于当前找到的最小的值
                *secondSmallestIndex = *smallestIndex;
                *smallestIndex = i;
            }else if(HT[i].weight < HT[*secondSmallestIndex].weight){
				//如果当前的值小于当前找到的次小的值
                *secondSmallestIndex = i;
            }
        }
    }
 
}


//四、打印赫夫曼表
void printtable(HTree HT, int n) {
	printf("\nHTTABLE:\n————————————————————\n");
	printf("| code\t|weight\t|parent\t|lchild\t|rchild|\n");
	for(int q=1; q<=2*n-1; q++){
		printf("————————————————————\n");
		printf("|%4d\t|%4d\t|%4d\t|%4d\t|%4d  |\n",q,HT[q].weight,HT[q].parent,HT[q].lchild,HT[q].rchild);
	}
	printf("————————————————————\n\n");
}


//五、打印赫夫曼码
void printCodes(HTree HT, HuffmanCode hc, int n){
	printf("\nCODE:\n————————————\n");
	printf("| 字符\t|  赫夫曼编码  |\n");
	for(int i=1; i<=n; i++){
		printf("————————————\n");
		printf("|%4d\t|  %10s  |\n",HT[i].weight,hc[i]);
	}
//	printf("\n");
	printf("————————————\n\n");
}

测试结果:
在这里插入图片描述

#include #include #include #include using namespace std; # define MaxN 100//初始设定的最大结点数 # define MaxC 1000//最大编码长度 # define ImpossibleWeight 10000//结点不可能达到的权值 # define n 26//字符集的个数 //-----------哈夫曼树的结点结构类型定义----------- typedef struct //定义哈夫曼树各结点 { int weight;//权值 int parent;//双亲结点下标 int lchild;//左孩子结点下标 int rchild;//右孩子结点下标 }HTNode,*HuffmanTree;//动态分配数组存储哈夫曼树 typedef char**HuffmanCode;//动态分配数组存储哈夫曼编码 //-------全局变量-------- HuffmanTree HT; HuffmanCode HC; int *w;//权值数组 //const int n=26;//字符集的个数 char *info;//字符值数组 int flag=0;//初始化标记 //********************************************************************** //初始化函数 //函数功能: 从终端读入字符集大小n , 以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中 //函数参数: //向量HT的前n个分量示叶子结点,最后一个分量示根结点,各字符的编码长度不等,所以按实际长度动态分配空间 void Select(HuffmanTree t,int i,int &s1,int &s2) { //s1为最小的两个值中序号最小的那个 int j; int k=ImpossibleWeight;//k的初值为不可能达到的最大权值 for(j=1;j<=i;j++) { if(t[j].weight<k&&t[j].parent==0) {k=t[j].weight; s1=j;} } t[s1].parent=1; k=ImpossibleWeight; for(j=1;j<=i;j++) { if(t[j].weight0),构造哈夫曼树HT,并求出n个字符的哈弗曼编码HC { int i,m,c,s1,s2,start,f; HuffmanTree p; char* cd; if(num<=1) return; m=2*num-1;//m为结点数,一棵有n个叶子结点的哈夫曼树共有2n-1个结点,可以存储在一个大小为2n-1的一维数组中 HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//0号单元未用 //--------初始化哈弗曼树------- for(p=HT+1,i=1;iweight=*w; p->parent=0; p->lchild=0; p->rchild=0; } for(i=num+1;iweight=0; p->parent=0; p->lchild=0; p->rchild=0; } //--------建哈夫曼树------------- for(i=num+1;i<=m;i++) { Select(HT,i-1,s1,s2);//在HT[1...i-1]选择parent为0且weight最小的两个结点,其序号分别为s1和s2 HT[s1].parent=i; HT[s2].parent=i; HT[i].lchild=s1; HT[i].rchild=s2;//左孩子权值小,右孩子权值大 HT[i].weight=HT[s1].weight+HT[s2].weight; } //-------从叶子到根逆向求每个字符的哈弗曼编码-------- HC=(HuffmanCode)malloc((num+1)*sizeof(char *));//指针数组:分配n个字符编码的头指针向量 cd=(char*)malloc(n*sizeof(char*));//分配求编码的工作空间 cd[n-1]='\0';//编码结束符 for(i=1;i<=n;i++)//逐个字符求哈弗曼编码 { start=n-1;//编码结束符位置 for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)//从叶子到跟逆向求哈弗曼编码 if(HT[f].lchild==c) cd[--start]='0';//判断是左孩子还是右孩子(左为0右为1) else cd[--start]='1'; HC[i]=(char*)malloc((num-start)*sizeof(char*));//按所需长度分配空间 int j,h; strcpy(HC[i],&cd[start]); } free(cd); } //****************初始化函数****************** void Initialization() { flag=1;//标记为已初始化 int i; w=(int*)malloc(n*sizeof(int));//为26个字符权值分配空间 info=(char*)malloc(n*sizeof(char));//为26个字符分配空间 ifstream infile("ABC.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>info[i]; infile>>w[i]; } infile.close(); cout<<"读入字符成功!"<<endl; HuffmanCoding(HT,HC,w,n); //------------打印编码----------- cout<<"依次显示各个字符的值,权值或频度,编码如下"<<endl; cout<<"字符"<<setw(6)<<"权值"<<setw(11)<<"编码"<<endl; for(i=0;i<n;i++) { cout<<setw(3)<<info[i]; cout<<setw(6)<<w[i]<<setw(12)<<HC[i+1]<<endl; } //---------将建好的哈夫曼树写入文件------------ cout<<"下面将哈夫曼树写入文件"<<endl; ofstream outfile("hfmTree.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i<n;i++,w++) { outfile<<info[i]<<" "; outfile<<w[i]<<" "; outfile<<HC[i+1]<<" "; } outfile.close(); cout<<"已经将字符与对应的权值,编码写入根目录下文件hfmTree.txt"<<endl; } //*****************输入待编码字符函数************************* void Input() { char string[100]; ofstream outfile("ToBeTran.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"请输入你想要编码的字符串(字符个数应小于100),以#结束"<>string; for(int i=0;string[i]!='\0';i++) { if(string[i]=='\0') break; outfile<<string[i]; } cout<<"获取报文成功"<<endl; outfile.close(); cout<<"------"<<"已经将报文存入根目录下的ToBeTran.txt文件"<<endl; } //******************编码函数**************** void Encoding() { int i,j; char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的ToBeTran.txt文件中的字符进行编码"<<endl; ifstream infile("ToBeTran.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>string[i]; } for(i=0;i<100;i++) if(string[i]!='#') cout<<string[i]; else break; infile.close(); ofstream outfile("CodeFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;string[i]!='#';i++) { for(j=0;j<n;j++) { if(string[i]==info[j]) outfile<<HC[j+1]; } } outfile<<'#'; outfile.close(); free(string); cout<<"编码完成------"; cout<<"编码已写入根目录下的文件CodeFile.txt中"<<endl; } //******************译码函数**************** void Decoding() { int j=0,i; char *code; code=(char*)malloc(MaxC*sizeof(char)); char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的CodeFile.txt文件中的代码进行译码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') { cout<<code[i]; } else break; } infile.close(); int m=2*n-1; for(i=0;code[i-1]!='#';i++) { if(HT[m].lchild==0) { string[j]=info[m-1]; j++; m=2*n-1; i--; } else if(code[i]=='1') m=HT[m].rchild; else if(code[i]=='0') m=HT[m].lchild; } string[j]='#'; ofstream outfile("TextFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"的译码为------"<<endl; for( i=0;string[i]!='#';i++) { outfile<<string[i]; cout<<string[i]; } outfile<<'#'; outfile.close(); cout<<"------译码完成------"<<endl; cout<<"译码结果已写入根目录下的文件TextFile.txt中"<<endl; free(code); free(string); } //*************打印编码函数**************** void Code_printing() { int i; char *code; code=(char*)malloc(MaxC*sizeof(char)); cout<<"下面打印根目录下文件CodeFile.txt中的编码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') cout<<code[i]; else break; } infile.close(); cout<<endl; ofstream outfile("CodePrin.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;code[i]!='#';i++) { outfile<<code[i]; } outfile.close(); free(code); cout<<"------打印结束------"<<endl; cout<<"该字符形式的编码文件已写入文件CodePrin.txt中"<<endl; } //*************打印哈夫曼树函数**************** int numb=0; void coprint(HuffmanTree start,HuffmanTree HT) //start=ht+26这是一个递归算法 { if(start!=HT) { ofstream outfile("TreePrint.txt",ios::out); if(!outfile) { cerr<<"打开失败"<rchild,HT); //递归先序遍历 cout<<setw(5*numb)<weight<rchild==0) cout<<info[start-HT-1]<<endl; outfile<weight; coprint(HT+start->lchild,HT); numb--; outfile.close(); } } void Tree_printing(HuffmanTree HT,int num) { HuffmanTree p; p=HT+2*num-1; //p=HT+26 cout<<"下面打印赫夫曼树"<<endl; coprint(p,HT); //p=HT+26 cout<<"打印工作结束"<<endl; } //*************主函数************************** int main() { char choice; do{ cout<<"************哈弗曼编/译码器系统***************"<<endl; cout<<"请选择您所需功能:"<<endl; cout<<":初始化哈弗曼树"<<endl; cout<<":输入待编码字符串"<<endl; cout<<":利用已建好的哈夫曼树进行编码"<<endl; cout<<":利用已建好的哈夫曼树进行译码"<<endl; cout<<":打印代码文件"<<endl; cout<<":打印哈夫曼树"<<endl; cout<<":退出"<<endl; if(flag==0) { cout<<"请先初始化哈夫曼树,输入I"<<endl; cout<<""<>choice; switch(choice) { case 'I':Initialization();break; case 'W':Input();break; case 'E':Encoding();break; case 'D':Decoding();break; case 'P':Code_printing();break; case 'T':Tree_printing(HT,n);break; case 'Q':;break; default:cout<<"输入的命令出错,请重新输入!"<<endl; } }while(choice!='Q'); free(w); free(info); free(HT); free(HC); system("pause"); return 0; }
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值