public class Test_31 { // 动态规划解决0-1背包问题 public int knapsack(int capacity, int[] weights, int[] values, int n) { // 创建一个二维数组dp,用于记录状态转移过程 int[][] dp = new int[n + 1][capacity + 1]; // 遍历物品 for (int i = 1; i <= n; i++) { // 遍历背包容量 for (int w = 1; w <= capacity; w++) { if (weights[i - 1] > w) { // 当前物品重量大于背包容量,无法放入,取上一个状态的值 dp[i][w] = dp[i - 1][w]; } else { // 否则比较放入当前物品和不放入当前物品两种情况的最大价值 dp[i][w] = Math.max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]]); } } } // 返回背包问题的最优解 return dp[n][capacity]; } public static void main(String[] args) { Test_31 knapsackProblem = new Test_31(); int capacity = 15; int[] weights = {2, 3, 4, 5}; int[] values = {3, 4, 5, 6}; int n = weights.length; // 计算获得的最大价值 int maxValue = knapsackProblem.knapsack(capacity, weights, values, n); System.out.println("The maximum value that can be obtained is: " + maxValue); } }
实现一个动态规划算法,解决背包问题
最新推荐文章于 2024-11-06 11:05:01 发布