一刷111-动态规划-1049最后一块石头的重量II(m)

题目:
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。
假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0----------------------
示例:
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 24,得到 2,所以数组转化为 [2,7,1,8,1],
组合 78,得到 1,所以数组转化为 [2,1,1,1],
组合 21,得到 1,所以数组转化为 [1,1,1],
组合 11,得到 0,所以数组转化为 [1],这就是最优值。

输入:stones = [31,26,33,21,40]
输出:5

输入:stones = [1,2]
输出:1

提示:
1 <= stones.length <= 30
1 <= stones[i] <= 100
-------------------
思考:
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
是不是感觉和416. 分割等和子集非常像了。
本题物品的重量为store[i],物品的价值也为store[i]。
对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲:
确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背dp[j]这么重的石头。
确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],
看着有点晕乎。
还是要牢记dp[j]的含义,要知道dp[j - stones[i]]为 容量为j - stones[i]的背包最大所背重量。

dp数组如何初始化
既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。
因为提示中给出1 <= stones.length <= 301 <= stones[i] <= 1000,所以最大重量就是30 * 1000 
而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。
当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。
我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,
这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

代码为:
vector<int> dp(15001, 0);
确定遍历顺序
如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品
    for (int j = target; j >= stones[i]; j--) { // 遍历背包
        dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
    }
}
举例推导dp数组
举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

在这里插入图片描述

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,
所以sum - dp[target] 一定是大于等于dp[target]的。
那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]------------------
代码:
class Solution {
	public int lastStoneWeightII(int[] stones) {
		int sum = 0;
		for (int i : stones) {
			sum += i;
		}
		int target = sum >> 1;
		int[] dp = new int[target + 1];
		for (int i = 0; i < stones.length; i++) {
			for (int j = target; j >= stones[i]; j--) {
				dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
			}
		}
		return sum - 2 * dp[target];
	}
}

LC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值