一刷187-力扣热题-287寻找重复数(m)

该博客探讨了一种利用快慢指针(Floyd 算法)解决数组中存在一个重复整数的问题。通过将数组视为链表,当数组没有重复元素时形成直线链表,而有重复元素时则会出现环路。通过设置两个指针,一个慢指针每次前进一位,一个快指针每次前进两位,最终两者会在环的入口相遇。之后再寻找环的入口,即可找到重复的整数。这种方法巧妙地将数据结构和算法结合,实现了常量级额外空间的解决方案。
摘要由CSDN通过智能技术生成
题目:
给定一个包含 n + 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),
可知至少存在一个重复的整数。

假设 nums 只有 一个重复的整数 ,返回 这个重复的数 。
你设计的解决方案必须 不修改 数组 nums 且只用常量级 O(1) 的额外空间。

示例:
输入:nums = [1,3,4,2,2]
输出:2

输入:nums = [3,1,3,4,2]
输出:3
 
提示:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
nums 中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
------------------------
思考:
使用环形链表II的方法解题(142.环形链表II),
使用 142 题的思想来解决此题的关键是要理解如何将输入的数组看作为链表。

首先明确前提,整数的数组 nums 中的数字范围是 [1,n]。考虑一下两种情况:
如果数组中没有重复的数,
以数组 [1,3,4,2]为例,我们将数组下标 n 和数 nums[n] 建立一个映射关系 f(n)
其映射关系 n->f(n)为:
0->1
1->3
2->4
3->2
我们从下标为 0 出发,根据 f(n) 计算出一个值,以这个值为新的下标,
再用这个函数计算,以此类推,直到下标超界。这样可以产生一个类似链表一样的序列。
0->1->3->2->4->null

如果数组中有重复的数,以数组 [1,3,4,2,2] 为例,
我们将数组下标 n 和数 nums[n] 建立一个映射关系 f(n)
其映射关系 n->f(n) 为:
0->1
1->3
2->4
3->2
4->2
同样的,我们从下标为 0 出发,根据 f(n)f(n) 计算出一个值,以这个值为新的下标,再用这个函数计算,以此类推产生一个类似链表一样的序列。
0->1->3->2->4->2->4->2->……
这里 2->4 是一个循环,那么这个链表可以抽象为下图:

在这里插入图片描述

从理论上讲,数组中如果有重复的数,那么就会产生多对一的映射,这样,形成的链表就一定会有环路了,

综上
1.数组中有一个重复的整数 <==> 链表中存在环
2.找到数组中的重复整数 <==> 找到链表的环入口

至此,问题转换为 142 题。那么针对此题,快、慢指针该如何走呢。根据上述数组转链表的映射关系,
可推出
142 题中慢指针走一步 slow = slow.next ==> 本题 slow = nums[slow]
142 题中快指针走两步 fast = fast.next.next ==> 本题 fast = nums[nums[fast]]

class Solution {
    public int findDuplicate(int[] nums) {
        int slow = 0;
        int fast = 0;
        slow = nums[slow];
        fast = nums[nums[fast]];
        while (slow != fast) {
            slow = nums[slow];
            fast = nums[nums[fast]];
        }
        int pre1 = 0; 
        int pre2 = slow;
        while (pre1 != pre2) {
            pre1 = nums[pre1];
            pre2 = nums[pre2];
        }
        return pre1;
    }
}

LC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值