一刷252-二分模块- Offer II 069. 山峰数组的顶部(同:852. 山脉数组的峰顶索引)

题目:
符合下列属性的数组 arr 称为 山峰数组(山脉数组) :

arr.length >= 3
存在 i(0 < i < arr.length - 1)使得:
arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
给定由整数组成的山峰数组 arr ,返回任何满足
arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1] 
的下标 i ,即山峰顶部。
---------------------
示例 1:
输入:arr = [0,1,0]
输出:1
示例 2:

输入:arr = [1,3,5,4,2]
输出:2
示例 3:

输入:arr = [0,10,5,2]
输出:1
示例 4:

输入:arr = [3,4,5,1]
输出:2
示例 5:

输入:arr = [24,69,100,99,79,78,67,36,26,19]
输出:2
 
提示:
3 <= arr.length <= 104
0 <= arr[i] <= 106
题目数据保证 arr 是一个山脉数组

进阶:很容易想到时间复杂度 O(n) 的解决方案,你可以设计一个 O(log(n)) 的解决方案吗?
-------------------
思路:
仔细分析山峰顶部左右的特点:
对于山峰顶部的左侧,对于任意 i ,nums[i] < nums[i + 1];
对于山峰顶部的右侧,对于任意 i ,nums[i] > nums[i + 1];
使用二分查找的方法:
当 nums[mid] < nums[mid + 1] 的时候,证明 mid 处于山峰顶部的左侧,此时应 left = mid + 1;
当 nums[mid - 1] > nums[mid] 的时候,证明 mid 处于山峰顶部的右侧,此时应 right = mid - 1;
----------------
class Solution {
    public int peakIndexInMountainArray(int[] heights) {
        int left = 0;
        int right = heights.length - 1;
        while (left <= right) {
            int mid = (left + right) >> 1;
            if (heights[mid + 1] > heights[mid]) { //! > 峰顶在 mid右侧
                left = mid + 1;
            } else if (heights[mid - 1] > heights[mid]) { // !!  > 峰顶在 左侧
                right = mid - 1;
            } else {
                return mid;
            }
        }
        return -1;
    }
}

LC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值