题目:
给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−2^31,2^31 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
----------------------
示例 1:
输入:x =123
输出:321
示例 2:
输入:x =-123
输出:-321
示例 3:
输入:x =120
输出:21
示例 4:
输入:x =0
输出:0
提示:
-231<= x <=231-1-------------------------
思路:
从上述解法来看,我们在循环的 ans = ans *10+ x %10 这一步会有溢出的风险,
因此我们需要边遍历边判断是否溢出:
对于正数而言:溢出意味着 ans *10+ x %10>Integer.MAX_VALUE,
对等式进行变化后可得 ans >(Integer.MAX_VALUE - x %10)/10)。
所以我们可以根据此变形公式进行预判断
对于负数而言:溢出意味着 ans *10+ x %10<Integer.MIN_VALUE,
对等式进行变化后可得 ans <(Integer.MIN_VALUE - x %10)/10)。
所以我们可以根据此变形公式进行预判断
------------------------
时间复杂度:数字 x 的位数,数字大约有log10x 位。复杂度为O(log10x)
空间复杂度:O(1)----------------classSolution{publicintreverse(int x){int res =0;//结果集while(x !=0){if(x >0&& res >(Integer.MAX_VALUE - x %10)/10)return0;if(x <0&& res <(Integer.MIN_VALUE - x %10)/10)return0;
res = res *10+ x %10;
x /=10;}return res;}}